蒙脱石纳米片/聚偏氟乙烯改性聚丙烯复合隔膜的制备及性能研究

孔静, 李宇恒, 胡雅祺, 王蕊, 陈天星. 蒙脱石纳米片/聚偏氟乙烯改性聚丙烯复合隔膜的制备及性能研究[J]. 矿产保护与利用, 2023, 43(6): 107-113. doi: 10.13779/j.cnki.issn1001-0076.2023.06.013
引用本文: 孔静, 李宇恒, 胡雅祺, 王蕊, 陈天星. 蒙脱石纳米片/聚偏氟乙烯改性聚丙烯复合隔膜的制备及性能研究[J]. 矿产保护与利用, 2023, 43(6): 107-113. doi: 10.13779/j.cnki.issn1001-0076.2023.06.013
KONG Jing, LI Yuheng, HU Yaqi, WANG Rui, CHEN Tianxing. Preparation and Performance of Montmorillonite Nanosheet/PVDF−Polypropylene Composite Separator[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 107-113. doi: 10.13779/j.cnki.issn1001-0076.2023.06.013
Citation: KONG Jing, LI Yuheng, HU Yaqi, WANG Rui, CHEN Tianxing. Preparation and Performance of Montmorillonite Nanosheet/PVDF−Polypropylene Composite Separator[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 107-113. doi: 10.13779/j.cnki.issn1001-0076.2023.06.013

蒙脱石纳米片/聚偏氟乙烯改性聚丙烯复合隔膜的制备及性能研究

  • 基金项目: 国家自然科学基金青年基金项目(52104267)
详细信息
    作者简介: 孔静(1998—),女,陕西渭南人,硕士研究生,主要从事矿物材料及其资源综合利用研究,E-mail:18209285398@163.com
    通讯作者: 陈天星(1992—),男,山西运城人,博士,副教授,主要从事新能源矿物材料、盐湖资源综合高效利用研究,E-mail:chentian2728@xauat.edu.cn
  • 中图分类号: TD985;TQ320.72

Preparation and Performance of Montmorillonite Nanosheet/PVDF−Polypropylene Composite Separator

More Information
  • 商用聚烯烃隔膜表现出较差的电解液浸润性和大幅的热收缩性,不利于锂离子电池的安全高效运行。利用天然矿物独特的晶体结构、良好的润湿性、优异的热稳定性和机械稳定性,在聚烯烃隔膜表面涂覆天然矿物材料是增强隔膜性能的方法之一。采用刮涂法制备了复合隔膜(MMT−PVDF/PP),对复合隔膜的机械性能、润湿性能、热稳定性等性能进行了研究。结果表明:当涂布液中蒙脱石纳米片和黏结剂的质量比为5∶5时,复合隔膜表面形成了MMT−PVDF三维稳定结构,相比聚丙烯隔膜(PP),MMT−PVDF/PP复合隔膜的拉伸强度提升了6倍,吸液率和保液率分别提升了24.93百分点和96.7百分点。复合隔膜在150℃环境下1 h后仍能维持较好的尺寸形态,收缩率不到10%。

  • 加载中
  • 图 1  MMT−PVDF/PP隔膜制备过程

    Figure 1. 

    图 2  不同比例MMT−PVDF混合涂覆PP隔膜的扫描电镜照片

    Figure 2. 

    图 3  不同比例MMT−PVDF涂覆改性隔膜的拉伸应力曲线

    Figure 3. 

    图 4  不同比例MMT−PVDF涂覆改性隔膜的水接触角照片

    Figure 4. 

    图 5  不同比例MMT−PVDF涂覆改性隔膜的吸液率和保液率

    Figure 5. 

    图 6  不同比例MMT−PVDF涂覆改性隔膜的热收缩(a)与热收缩率(b)

    Figure 6. 

    表 1  不同比例MMT−PVDF涂覆改性隔膜的其他性能

    Table 1.  Other propertis of modified separator coated with different ratios of MMT−PVDF

    项目m(MMT)∶m(PVDF)=3∶7m(MMT)∶m(PVDF)=5∶5m(MMT)∶m(PVDF)=7∶3
    厚度/μm393235
    面密度/(g·m−2)14.0315.3410.37
    孔隙率/%93.3995.3993.83
    拉伸强度(MD)/MPa48.658.1288.11
    断裂伸长率(TD)/%67.3483.2830.39
    最大力/N97.2101.7288.11
    下载: 导出CSV
  • [1]

    隋谨伊, 吕晓东. 锂离子电池隔膜行业发展现状及趋势展望[J]. 石油石化绿色低碳, 2023, 8(1): 17−21.

    SUI J Y, LV X D. Status and prospect of lithium−ion battery separator[J]. Green Petroleum& Petrochemicals, 2023, 8(1): 17−21.

    [2]

    WANG Y, SHI L, ZHOU H, et al. Polyethylene separators modified by ultrathin hybrid films enhancing lithium ion transport performance and Li−metal anode stability[J]. Electrochimica Acta, 2018(8): 259.

    [3]

    SU M, HUANG G, WANG S, et al. High safety separators for rechargeable lithium batteries[J]. Science China(Chemistry), 2021, 64(7): 1131−1156.

    [4]

    袁玉玲. 锂离子电池聚烯烃隔膜的改性研究[J]. 化工管理, 2021(20): 83−84.

    YUAN Y L. Study on modification of polyolefin diaphragm in lithium−ion battery[J]. Chemical Enterprise Management, 2021(20): 83−84.

    [5]

    王惠亚, 赵立敏, 张芳, 等. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251−1262.

    WANG H Y, ZHAO L M, ZHANG F, et al. High−performance lithium−ion secondary battery membranes[J]. Progress in Chemistry. 2019, 31(9): 1251−1262.

    [6]

    李嘉兴, 李锋. 聚烯烃锂电隔膜表面改性技术研究进展[J]. 信息记录材料, 2021, 22(4): 3−8.

    LI J X, LI F. Research progress on surface modification of polyolefin membrane for lithium−ion batteries[J]. Information Recording Materials, 2021, 22(4): 3−8.

    [7]

    孙明辉, 马小楷, 阚婷, 等. 锂电用聚烯烃基涂覆隔膜研究进展[J]. 电池工业, 2021, 25(3): 143−147.

    SUN M H, MA X K, HAN T, et al. Research progress of polyolefin−based surface coating separator for lithium−ion batteries[J]. Chinese Battery Industry, 2021, 25(3): 143−147.

    [8]

    孙国华, 崔佳齐, 汪杨, 等. 耐热型聚合物锂离子电池隔膜的研究进展[J]. 中国塑料, 2022, 36(10): 190−194.

    SUN G H, CUI J Q, WANG Y, et al. Research progress in heat−resistant polymer lithium−ion battery separators[J]. China Plastics, 2022, 36(10): 190−194.

    [9]

    LIANG X, YANG Y, JIN X, et al. The high performances of SiO2/Al2O3−coated electrospun polyimide fibrous separator for lithium−ion battery[J]. Journal of Membrane Science, 2015, 493(3): 1−7.

    [10]

    郑怡磊, 吴于松, 许远远, 等. 高性能锂离子电池隔膜的研究进展[J]. 有机氟工业, 2018(4): 21−26.

    ZHENG Y L, WU Y S, XU Y Y, et al. Research progress on high performance separator for lithium−ion batteries[J]. Organo−Flurine Indystry, 2018(4): 21−26.

    [11]

    YAN H, ZHANG Z. Effect and mechanism of cation species on the gel properties of montmorillonite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 611(3): 0927−7757.

    [12]

    谢潇琪, 范鹏凯, 刘超. 蒙脱石基复合光催化材料处理有机废水研究进展[J]. 复旦学报(自然科学版), 2022, 61(2): 238−248.

    XIE X Q, FAN P K, LIU C. Research progress on montmorillonite−based composite photocatalysts[J]. Journal of Fudan University(Natural Science), 2022, 61(2): 238−248.

    [13]

    侯磊, 韩学锋, 邢宝林, 等. 天然矿物为模板制备功能炭材料的研究进展[J]. 材料导报, 2022, 36(12): 32−42.

    HOU L, HAN X F, XING B L, et al. Research progress on the preparation of functional carbon materials using natural minerals as templates[J]. Materials Reports, 2022, 36(12): 32−42.

    [14]

    SONG Q, LI A, SHI L, et al. Thermally stable, nano−porous and eco−friendly sodium alginate/attapulgite separator for lithium−ion batteries[J]. Energy Storage Materials, 2019, 22(5): 48−56.

    [15]

    KUMAR S, JOG J P, NATARAJAN U. Preparation and characterization of poly (methyl methacrylate)−clay nanocomposites via melt intercalation: The effect of organoclay on the structure and thermal properties[J]. Journal of Applied Polymer Science, 2003, 89(5): 1186−1194. doi: 10.1002/app.12050

    [16]

    LIU F, CHUAN X. Recent developments in natural mineral−based separators for lithium−ion batteries[J]. RSC Advances, 2021, 11(27): 16633−16644.

    [17]

    LI J, YU J R, WANG Y, et al. Intercalated montmorillonite reinforced polyimide separator prepared by solution blow spinning for lithium−ion batteries[J]. Industrial & Engineering Chemistry Research, 2020, 59(28): 12879−12888.

    [18]

    ZHANG X, CHEN Y, YU B, et al. Lithiophilic 3D VN@N−rGO as a multifunctional interlayer for dendrite−free and ultrastable lithium−metal batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20125−20136.

    [19]

    HUANG C, JI H, GUO B, et al. Composite nanofiber membranes of bacterial cellulose/halloysite nanotubes as lithium ion battery separators[J]. Cellulose, 2019, 26(11): 6669−6681. doi: 10.1007/s10570-019-02558-y

    [20]

    李晓哲. 浸涂−刮涂法改性聚对苯二甲酸乙二醇酯隔膜[D]. 秦皇岛: 燕山大学, 2016.

    LI X Z. Poly (ethylene terphthalate) separators were modified by dip−blade coating method[D]. Qinhuangdao: Yanshan University, 2016.

    [21]

    马平川, 刘杲珺, 杜敬然, 等. 锂离子电池用溶剂型PVDF混涂隔膜制备及性能[J]. 工程塑料应用, 2022, 50(1): 38−42.

    MA P C, LIU G J, DU J R, et al. Preparation and properties of hybrid coated separator of solvent type PVDF for lithium battery[J]. Engineering Plastics Application, 2022, 50(1): 38−42.

    [22]

    梁志扬, 郭亮亮, 朱梦媛, 等. 浅谈锂电池隔膜拉伸强度试样的制备[J]. 制造业自动化, 2020, 42(6): 150−152.

    LIANG Z Y, GUO L L, ZHU M Y, et al. Preparation of tensile strength sample of lithium battery separator[J]. Manufacturing Automation, 2020, 42(6): 150−152.

    [23]

    MAO Y, JUE N, WEI C, et al. Interfacial engineering of polypropylene separator with outstanding high−temperature stability for highly safe and stable lithium−sulfur batteries[J]. Electrochemistry Communications, 2021, 125(3): 1388−2481.

    [24]

    张红涛, 尚华, 顾波, 等. 沸石基锂离子电池隔膜的制备及性能[J]. 材料工程, 2017, 45(12): 83−87.

    ZHANG H T, SHANG H, GU B, et al. Preparation and performances of zeolite−based separator for lithium−ion batteries[J]. Journal of Materials Engineering, 2017, 45(12): 83−87.

  • 加载中

(6)

(1)

计量
  • 文章访问数:  518
  • PDF下载数:  17
  • 施引文献:  0
出版历程
收稿日期:  2023-06-13
刊出日期:  2023-12-25

目录