从含钒酸浸液中萃取提钒的研究进展

项新月, 叶国华, 朱思琴, 荣一阳, 张云, 宋昌溆. 从含钒酸浸液中萃取提钒的研究进展[J]. 矿产保护与利用, 2023, 43(5): 170-178. doi: 10.13779/j.cnki.issn1001-0076.2023.07.008
引用本文: 项新月, 叶国华, 朱思琴, 荣一阳, 张云, 宋昌溆. 从含钒酸浸液中萃取提钒的研究进展[J]. 矿产保护与利用, 2023, 43(5): 170-178. doi: 10.13779/j.cnki.issn1001-0076.2023.07.008
XIANG Xinyue, YE Guohua, ZHU Siqin, RONG Yiyang, ZHANG Yun, SONG Changxu. Solvent Extraction of Vanadium from Vanadium−bearing Acid Leaching Solution[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 170-178. doi: 10.13779/j.cnki.issn1001-0076.2023.07.008
Citation: XIANG Xinyue, YE Guohua, ZHU Siqin, RONG Yiyang, ZHANG Yun, SONG Changxu. Solvent Extraction of Vanadium from Vanadium−bearing Acid Leaching Solution[J]. Conservation and Utilization of Mineral Resources, 2023, 43(5): 170-178. doi: 10.13779/j.cnki.issn1001-0076.2023.07.008

从含钒酸浸液中萃取提钒的研究进展

  • 基金项目: 国家自然科学基金项目(51964028)
详细信息
    作者简介: 项新月(1999—),女,湖北黄冈人,硕士研究生,研究方向为钒的提取,E-mail:xinyue_xiang@163.com
    通讯作者: 叶国华(1981—),男,博士,副教授,长期从事钒资源的物理分选与化学提取研究,E-mail:ghye581@163.com
  • 中图分类号: TF804.2;TF841.3

Solvent Extraction of Vanadium from Vanadium−bearing Acid Leaching Solution

More Information
  • 针对含钒酸浸液净化与富集的难题,评述了其萃取提钒的研究进展。常规萃取时,酸性磷类萃取剂具有萃钒效率高、分相快等优点,但其除杂不彻底,且需消耗大量的酸;碱性胺类萃取剂具有较好选择性,且除杂彻底,但易产生第三相;螯合萃取剂能缩短萃取流程,萃余液中的游离酸还可循环使用,具有良好经济效益,但其降解问题仍未得到解决。新型萃取方法中,液膜萃取工艺简单、传质效率高、金属离子富集比高,但存在萃取流程长、药剂用量大、有机相损失多等缺点;离子液体具有许多优势,但由于其制备成本高,尚无法大规模投产应用;微乳液萃取具有分离速度快、分离效率高和选择性好的优点,但会产生氨氮废水;近年来协同萃取被广泛研究,但如何有效抑制拮抗作用使其充分发挥作用,尚需进一步研究。

  • 加载中
  • 图 1  V-H2O,E-pH图[14]

    Figure 1. 

    图 2  离子液体阳离子化学结构[28]

    Figure 2. 

    表 1  溶液在不同pH下的主要反应平衡式

    Table 1.  Main reaction equilibrium equations of solution at different pH

    序号方程式pH范围
    12(VO4)3–+2H+=(V2O7)4–+H2O10.0≤pH≤12.0
    22(V2O7)4–+4H+=(V4O12)4–+2H2OpH=9.0
    35(V4O12)4–+8H+=2(V10O28)6–+4H2OpH≤7.0
    43(H2V10O28)4–+H2O=3(H2V10O28)5–+3H+1.8≤pH≤6.5
    56(H2V10O28)4–+24H+=5H2V12O31+13H2OpH=1.6
    6(H2V10O28)4–+14H+=10VO2++8H2OpH<1.0
    下载: 导出CSV

    表 2  溶剂萃取法的种类及优缺点

    Table 2.  Types, advantages and disadvantages of solvent extraction

    萃取方法主要萃取剂种类优点缺点
    常规酸性磷类萃取法P204、P507萃取率高,技术成熟易挥发、易产生第三相、钒铁难分离
    常规碱性胺类萃取法伯胺:N1923萃取率高,技术成熟,选择性好,除杂彻底,不易产生第三相,适用分离钒铬易挥发、易燃易爆
    叔胺:N235萃取率高,技术成熟,选择性好,除杂彻底,不易产生第三相,钒铁分离效果极佳
    季胺:N263、Aliquat-336萃取率高,技术成熟,选择性好,除杂彻底,不易产生第三相,有望实现萃取剂循环利用
    常规螯合类萃
    取法
    喹啉类:Kelexl00选择性好,萃取率高除杂不彻底、污染环境
    羟肟类萃取剂:Lix984、M5640 HBLl01化学稳定性较差、除杂不彻底、价格昂贵
    液膜萃取法乳液液膜:D2EHPA作载体工艺流程短、萃取效率高、
    选择性好
    乳化液的形成、破乳困难,
    膜稳定性差
    支撑液膜:N235作载体
    离子液体萃取法阴离子:卤素离子、四氟硼酸根离子、六氟磷酸根离子低挥发性、功能可调、环保成本高
    阳离子:季铵盐类、季磷盐类、
    咪唑类、吡啶类
    微乳液萃
    取法
    W/O、Aliquat 336克服了乳化液膜的缺点、
    分离V、P效果好
    易产生高盐、氨氮废水、成本高
    协同萃取法NaCl-P204萃取效率高、除杂彻底部分有毒易挥发易燃易爆,易产生污染
    D2EHPA-PC88A
    D2EHPA-TBP-磺化煤油
    P507-N235-磺化煤油
    Cyanex272-N235
    下载: 导出CSV
  • [1]

    胡洋, 何东升, 谢志豪, 等. 石煤型钒矿预富集技术研究现状[J]. 金属矿山, 2018(12): 73−79.

    HU Y, HE D S, XIE Z H, et al. Research status of pre-enrichment technology of stone coal type vanadium ore[J]. Metal Mine, 2018(12): 73−79.

    [2]

    YUAN R, LI S L, CHE Y, et al. A critical review on extraction and refining of vanadium metal[J]. International Journal of Refractory Metals and Hard Materials, 2021, 101: 105696.

    [3]

    JING W, TAO J, WANG J P, et al. Cleaner extraction of vanadium from vanadium-chromium slag based on MnO2 roasting and manganese recycle[J]. Journal of Cleaner Production, 2020, 261: 121205. doi: 10.1016/j.jclepro.2020.121205

    [4]

    YING Z W, SONG Y, ZHU K Y, et al. A cleaner and sustainable method to recover vanadium and chromium from the leaching solution based on solvent extraction[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107384. doi: 10.1016/j.jece.2022.107384

    [5]

    丁满堂. 含钒钢渣提钒利用研究[J]. 矿产综合利用, 2020(6): 69−72.

    DING M T. Study on vanadium extraction from vanadium−containing steel slag[J]. Comprehensive Utilization of Minerals, 2020(6): 69−72.

    [6]

    杨用龙. 石煤湿法提钒工艺及其溶液化学研究[D]. 湘潭: 湘潭大学, 2010.

    YANG Y L. Study on wet vanadium extraction process from stone coal and its solution chemistry[D]. Xiangtan: Xiangtan University, 2010.

    [7]

    HE Y, ZHANG Y M, HUANG J, et al. Extraction of vanadium(V) from a vanadium-bearing shale leachate through bifunctional coordination in Mextral 984H extraction system[J]. Separation and Purification Technology, 2022, 288: 120452. doi: 10.1016/j.seppur.2022.120452

    [8]

    淡维杰, 肖连生, 张贵清, 等. 萃取法提取铬(Ⅲ)分离铁(Ⅱ)的研究[J]. 有色金属科学与工程, 2017, 8(3): 35−41.

    DAN W J, XIAO L S, ZHANG G Q, et al. Extraction of chromium (Ⅲ) from iron (Ⅱ)[J]. Nonferrous Metal Science and Engineering, 2017, 8(3): 35−41.

    [9]

    许亮. 从高浓度的硫酸溶液中萃取钒的研究[D]. 长沙: 中南大学, 2013.

    XU L. Extraction of vanadium from high concentration sulfuric acid solution[D]. Changsha: Central South University, 2013.

    [10]

    陈子杨, 叶国华, 左琪, 等. 有机胺类萃取剂构效关系及其萃钒的研究进展[J]. 钢铁钒钛, 2020, 41(3): 8−15.

    CHEN Z Y, YE G H, ZUO Q, et al. Structure-activity relationship of organic amine extractants and research progress of vanadium extraction[J]. Steel Vanadium Titanium, 2020, 41(3): 8−15.

    [11]

    TANG Y, YE G H, ZHANG H, et al. Solvent extraction of vanadium with D2EHPA from aqueous leachate of stone coal after low–temperature sulfation roasting[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650: 129584. doi: 10.1016/j.colsurfa.2022.129584

    [12]

    吴杨. 季铵盐类离子液体对盐酸介质中金属离子的萃取分离研究[D]. 济南: 山东大学, 2022.

    WU Y. Study on the extraction and separation of metal ions in hydrochloric acid medium by quaternary ammonium ionic liquids[D]. Jinan: Shandong University, 2022.

    [13]

    边振忠. 钒钛磁铁矿精矿铵盐焙烧回收有价金属的研究[D]. 北京: 北京科技大学, 2022.

    BIAN Z Z. Study on recovery of valuable metals from vanadium titanomagnetite concentrate by ammonium salt roasting[D]. Beijing: Beijing University of Science and Technology, 2022.

    [14]

    HU Y B, ZHANG Y M, XUE N N, et al. Nφ−pH diagrams and kinetics of V2O3 prepared by solution-phase hydrogen reduction[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(4): 1290−1300. doi: 10.1016/S1003-6326(22)65874-6

    [15]

    高蔷. 钒酸铁合成方法的实验研究[D]. 沈阳: 东北大学, 2013.

    GAO Q. Experimental study on the synthesis of iron vanadate[D]. Shenyang: Northeast University, 2013.

    [16]

    朱思琴, 叶国华, 亢选雄, 等. 含钒酸浸液净化与富集的研究进展[J]. 钢铁钒钛, 2022, 43(5): 10−22.

    ZHU S Q, YE G H, KANG X X, et al. Research progress on purification and enrichment of acid leaching solution containing vanadium[J]. Steel Vanadium Titanium, 2022, 43(5): 10−22.

    [17]

    宋强, 童雄, 谢贤, 等. 溶剂萃取法分离提取镍和钴的研究现状及展望[J/OL]. 中国有色金属学报, 2022: 1-23.

    SONG Q, TONG X, XIE X, et al. Research status and prospect of separation and extraction of nickel and cobalt by solvent extraction[J/OL]. Chinese Journal of Nonferrous Metals, 2022: 1-23.

    [18]

    胡艺博. 从低品位石煤钒矿中提取五氧化二钒的研究[D]. 昆明: 昆明理工大学, 2019.

    HU Y B. Study on the extraction of vanadium pentoxide from low-grade stone coal vanadium ore[D]. Kunming: Kunming University of Science and Technology, 2019.

    [19]

    冯雪茹. 采用P204萃取钒渣酸浸液中钒的基础研究[D]. 沈阳: 东北大学, 2015.

    FENG X R. Fundamental study on extraction of vanadium from acid leaching solution of vanadium slag by P204[D]. Shenyang: Northeastern University, 2015.

    [20]

    田宇楠. 从钒钛磁铁矿渣的废酸浸出液中萃取钒的研究[D]. 沈阳: 沈阳理工大学, 2015.

    TIAN Y N. Extraction of vanadium from waste acid leaching solution of vanadium-titanium magnetite slag[D]. Shenyang: Shenyang University of Technology, 2015.

    [21]

    朱军, 郭继科, 马晶, 等. 从含钒石煤酸浸液中溶剂萃取钒的试验研究[J]. 湿法冶金, 2011, 30(4): 293−297.

    ZHU J, GUO J K, MA J, et al. Experimental study on solvent extraction of vanadium from acid leaching solution of vanadium-bearing stone coal[J]. Hydrometallurgy, 2011, 30(4): 293−297.

    [22]

    陈嘉娴. 甲烷基质膜生物反应器中钒酸盐的生物还原及胞外聚合物的响应[D]. 杭州: 浙江大学, 2018.

    CHEN J X. Biological reduction of vanadate and response of extracellular polymer in methane matrix membrane bioreactor[D]. Hangzhou: Zhejiang University, 2018.

    [23]

    刘仕元. 钒渣中有价元素Fe、Mn、V、Cr和Ti选择性氯化及高值化基础研究[D]. 北京: 北京科技大学, 2019.

    LIU S Y. Basic research on selective chlorination and high value of valuable elements Fe, Mn, V, Cr and Ti in vanadium slag[D]. Beijing: Beijing University of Science and Technology, 2019.

    [24]

    陈倩文. 脂肪酸基绿色萃取剂在稀土和钍回收中的应用[D]. 赣州: 江西理工大学, 2020.

    CHEN Q W. Application of fatty acid-based green extractant in rare earth and thorium recovery[D]. Ganzhou: Jiangxi University of Science and Technology, 2020.

    [25]

    景晓华. 伯胺萃取分离钒铬机理及应用基础研究[D]. 天津: 南开大学, 2018.

    JING X H. Mechanism and application of primary amine extraction and separation of vanadium and chromium[D]. Tianjin: Nankai University, 2018.

    [26]

    孙颖, 张廷安, 吕国志, 等. 含钒酸性溶液阴离子萃取分离钒铁的研究[J]. 有色金属(冶炼部分)2021(4): 41−47.

    SUN Y, ZHANG T A, LV G Z, et al. Study on anion extraction separation of ferrovanadium from vanadium-containing acidic solution[J]. Nonferrous metals (smelting part), 2021 (4): 41−47.

    [27]

    YE G H, HU Y B, TONG X, et al. Extraction of vanadium from direct acid leaching solution of clay vanadium ore using solvent extraction with N235[J]. Hydrometallurgy, 2018, 177: 27−33. doi: 10.1016/j.hydromet.2018.02.004

    [28]

    LI W B, GUO R N, LI Y J, DONG Z H. Recovery of vanadium from direct acid leaching solutions of weathered crust vanadium‐titanium magnetite via solvent extraction with N235[J]. Hydrometallurgy, 2022, 213: 105913. doi: 10.1016/j.hydromet.2022.105913

    [29]

    张爽. 从粘土钒矿直接酸浸液中萃取提钒的研究[D]. 昆明: 昆明理工大学, 2015.

    ZHANG S. Extraction of vanadium from direct acid leaching solution of clay vanadium ore[D]. Kunming: Kunming University of Science and Technology, 2015.

    [30]

    Y. A. El-Nadi, N. S. Awwad, A. A. Nayl. A comparative study of vanadium extraction by Aliquat-336 from acidic and alkaline media with application to spent catalyst[J]. International Journal of Mineral Processing, 2009, 92(3): 115−120.

    [31]

    林政隆. 废SCR脱硝催化剂碱浸液中钒的分离提取研究[D]. 杭州: 浙江大学, 2021.

    LIN Z L. Study on separation and extraction of vanadium from alkali leaching solution of spent SCR denitration catalyst[D]. Hangzhou: Zhejiang University, 2021.

    [32]

    李强, 肖连生, 张贵清, 等. 季铵盐N263萃取分离钨酸钠中的钒[J]. 稀有金属与硬质合金, 2017, 45(2): 20−27.

    LI Q, XIAO L S, ZHANG G Q, et al. Extraction and separation of vanadium from sodium tungstate by quaternary ammonium salt N263[J]. Rare metals and cemented carbides, 2017, 45(2): 20−27.

    [33]

    HONG L, ZHANG Y M, HUANG J, et al. A synergistic approach for separating vanadium and impurities in black shale acid leaching solution using a mixture of Cyanex272 and N235[J]. Separation and Purification Technology, 2019, 215: 335−341. doi: 10.1016/j.seppur.2018.12.088

    [34]

    王丽萍, 李超, 李世春. 粉煤灰中稀散金属锗的富集回收技术研究进展[J]. 稀有金属与硬质合金, 2022, 50(6): 27−32.

    WANG L P, LI C, LI S C. Research progress on enrichment and recovery technology of rare metal germanium in fly ash[J]. Rare metals and cemented carbides, 2022, 50(6): 27−32.

    [35]

    贾蓝波, 王玲, 郭紫璇, 等. 含钒溶液萃取分离富集钒的研究进展[J]. 中国有色金属学报, 2022, 32(11): 3489−3504.

    JIA L B, WANG L, GUO Z X, et al. Research progress on extraction, separation and enrichment of vanadium from vanadium-containing solution[J]. Chinese Journal of Nonferrous Metals, 2022, 32(11): 3489−3504.

    [36]

    赵倩. 液膜分离技术在环境领域的应用[J]. 广东化工, 2022, 49(16): 108−109+123.

    ZHAO Q. Application of liquid membrane separation technology in environmental field[J]. Guangdong Chemical Industry, 2022, 49(16): 108−109+123.

    [37]

    刘红, 张一敏, 黄晶. N235支撑液膜分离页岩提钒酸浸液及传质机理[J]. 中国有色金属学报, 2020, 30(9): 2216−2223.

    LIU H, ZHANG Y M, HUANG J. Separation of acid leaching solution and mass transfer mechanism of vanadium extraction from shale by N235 supported liquid membrane[J]. Chinese Journal of Nonferrous Metals, 2020, 30(9): 2216−2223.

    [38]

    罗大双, 黄晶, 张一敏, 等. N235−煤油支撑液膜体系中钒萃取分离性能研究[J]. 有色金属(冶炼部分), 2018(6): 33−38.

    LUO D S, HUANG J, ZHANG Y M, et al. Study on vanadium extraction and separation performance in N235-kerosene supported liquid membrane system[J]. Nonferrous Metals (smelting part), 2018(6): 33−38.

    [39]

    唐悦, 叶国华, 胡渝杰, 等. 离子液体在萃取分离中的应用现状与发展趋势[J]. 矿冶, 2021, 30(6): 54−62.

    TANG Y, YE G H, HU Y J, et al. Application status and development trend of ionic liquids in extraction separation[J]. Mining and Metallurgy, 2021, 30(6): 54−62.

    [40]

    LUO D S, HUANG J, ZHANG Y M, et al. Highly efficient separation and extraction of vanadium from a multi-impurity leachate of vanadium shale using tri-n-octylmethylammonium chloride[J]. Separation and Purification Technology, 2020, 230: 115842.

    [41]

    魏君怡. 烷基咪唑类离子液体萃取分离钒铬渣酸浸液的实验研究[D]. 沈阳: 东北大学, 2018.

    WEI J Y. Experimental study on extraction and separation of acid leaching solution of vanadium chromium slag by alkyl imidazole ionic liquids[D]. Shenyang: Northeastern University, 2018.

    [42]

    HE J G, TAO W J, DONG G Z. Study on extraction performance of vanadium (Ⅴ) from aqueous solution by octyl-imidazole ionic liquids extractants[J]. Metals, 2022, 12(5): 854. doi: 10.3390/met12050854

    [43]

    周超, 李勇, 薛向欣. N-辛基吡啶类离子液体对钒渣水浸液中钒的萃取机理[J]. 中国有色金属学报, 2020, 30(1): 172−179.

    ZHOU C, LI Y, XUE X X. Extraction mechanism of vanadium from aqueous leaching solution of vanadium slag by N-octyl pyridine ionic liquid[J]. Chinese Journal of Nonferrous Metals, 2020, 30(1): 172−179.

    [44]

    陈传林. 微乳液法从强碱性环境中提钒研究[D]. 赣州: 江西理工大学, 2010.

    CHEN C L. Extraction of vanadium from strong alkaline environment by microemulsion method[D]. Ganzhou: Jiangxi University of Science and Technology, 2010.

    [45]

    郭赟. 微乳液萃取钒制备高纯钒产品的方法研究[D]. 重庆: 重庆大学, 2021.

    GUO Y. Study on the preparation of high purity vanadium products by microemulsion extraction of vanadium[D]. Chongqing: Chongqing University, 2021.

    [46]

    郭赟, 李鸿乂, 林敏敏, 等. W/O微乳液体系从沉钒废水中萃取钒[C]//第三届钒钛微合金化高强钢开发应用技术暨第四届钒产业先进技术交流会论文集. 2017: 169−173.

    GUO Y, LI H Y, LIN M M, et al. Extraction of vanadium from vanadium precipitation wastewater by W/O microemulsion system[C]//Proceedings of the 3rd V-Ti microalloyed high strength steel development and application technology and the 4th vanadium industry advanced technology exchange conference. 2017: 169−173.

    [47]

    黄洁. 微乳液萃取制备高纯V2O5的方法研究[D]. 重庆: 重庆大学, 2021.

    HUANG J. Study on the preparation of high purity V2O5 by microemulsion extraction[D]. Chongqing: Chongqing University, 2021.

    [48]

    朱志全. 微乳液提取铝酸钠溶液中钒的工艺研究[D]. 赣州: 江西理工大学, 2010.

    ZHU Z Q. Study on extraction of vanadium from sodium aluminate solution by microemulsion[D]. Ganzhou: Jiangxi University of Science and Technology, 2010.

    [49]

    陈金清, 朱志全, 陈传林. W/O微乳液对强碱体系中钒的萃取[J]. 有色金属(冶炼部分), 2010(4): 29−32+44.

    CHEN J Q, ZHU Z Q, CHEN C L. W/Omicroemulsion extraction of vanadium in strong alkali system[J]. Nonferrous metals (smelting part), 2010(4): 29−32+44.

    [50]

    钟涛, 乐长高. 微乳液在萃取分离中的应用研究[J]. 化工时刊, 2008(10): 26−58.

    ZHONG T, LE C G. Application of microemulsion in extraction separation[J]. Chemical Times, 2008(10): 26−58.

    [51]

    周富荣, 杜金萍, 万昆. 微乳液膜连续处理焦化厂含酚废水的试验研究[J]. 工业水处理, 2007(3): 49−52.

    ZHOU F R, DU J P, WAN K. Experimental study on continuous treatment of phenolic wastewater from coking plant by microemulsion membrane[J]. Industrial Water Treatment, 2007(3): 49−52.

    [52]

    郭秋松, 刘志强, 朱薇, 等. D2EHPA/TBP协同萃取除铁铬锰制备超纯硫酸氧钒[J]. 材料研究与应用, 2013, 7(2): 77−81.

    GUO Q S, LIU Z Q, ZHU W, et al. D2EHPA/TBP synergistic extraction of iron, chromium and manganese to prepare ultrapure vanadyl sulfate[J]. Material Research and Application, 2013, 7(2): 77−81.

    [53]

    师启华. 钒页岩硫酸焙烧−协同萃取提钒工艺及机理研究[D]. 武汉: 武汉科技大学, 2018.

    SHI Q H. Study on the process and mechanism of sulfuric acid roasting-synergistic extraction of vanadium from vanadium shale[D]. Wuhan: Wuhan University of Science and Technology, 2018.

    [54]

    阳征斐, 陈友顺, 张豪杰, 等. “抑制−萃取”法从含铁酸溶液中选择性提钒[J]. 应用化学, 2020, 37(7): 803−809.

    YANG Z F, CHEN Y S, ZHANG H J, et al. Selective vanadium extraction from ferrous acid solution by 'inhibition-extraction' method[J]. Applied Chemistry, 2020, 37(7): 803−809.

    [55]

    张一敏, 薛楠楠, 刘涛, 等. 钒页岩全湿法绿色提取技术[J]. 中国矿业大学学报, 2022, 51(3): 520−531.

    ZHANG Y M, XUE N N, LIU T, et al. Entire wet green extraction technology of vanadium shale[J]. Journal of China University of Mining and Technology, 2022, 51(3): 520−531.

    [56]

    LI X B, DENG Z G, WEI C, et al. Solvent extraction of vanadium from a stone coal acidic leach solution using D2EHPA/TBP: Continuous testing[J]. Hydrometallurgy, 2015, 154: 359−363.

  • 加载中

(2)

(2)

计量
  • 文章访问数:  387
  • PDF下载数:  13
  • 施引文献:  0
出版历程
收稿日期:  2022-12-29
刊出日期:  2023-10-25

目录