赤铁矿常温/低温浮选捕收剂研究进展

姚富兴, 马艺闻, 张伦旭, 金丹, 孙欣. 赤铁矿常温/低温浮选捕收剂研究进展[J]. 矿产保护与利用, 2023, 43(6): 130-139. doi: 10.13779/j.cnki.issn1001-0076.2023.08.007
引用本文: 姚富兴, 马艺闻, 张伦旭, 金丹, 孙欣. 赤铁矿常温/低温浮选捕收剂研究进展[J]. 矿产保护与利用, 2023, 43(6): 130-139. doi: 10.13779/j.cnki.issn1001-0076.2023.08.007
YAO Fuxing, MA Yiwen, ZHANG Lunxu, JIN Dan, SUN Xin. Development of Room-temperature and Low-temperature Collectors for Hematite Flotation: a Comprehensive Review[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 130-139. doi: 10.13779/j.cnki.issn1001-0076.2023.08.007
Citation: YAO Fuxing, MA Yiwen, ZHANG Lunxu, JIN Dan, SUN Xin. Development of Room-temperature and Low-temperature Collectors for Hematite Flotation: a Comprehensive Review[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 130-139. doi: 10.13779/j.cnki.issn1001-0076.2023.08.007

赤铁矿常温/低温浮选捕收剂研究进展

  • 基金项目: 辽宁科技大学研究生科技创新项目(LKDYC202226)
详细信息
    作者简介: 姚富兴(1998—),男,河南三门峡人,硕士研究生,研究方向铁矿浮选药剂,E-mail:xing3213653676@163.com
    通讯作者: 马艺闻(1985—),女,博士,副教授,硕士研究生导师,从事药剂构效设计与应用等研究方向,Email:me-myw@ustl.edu.cn
  • 中图分类号: TD923+.1;TD951.1

Development of Room-temperature and Low-temperature Collectors for Hematite Flotation: a Comprehensive Review

More Information
  • 目前我国应用的赤铁矿浮选捕收剂多数因含有较长烃链而水溶性差,在浮选作业时常需要对矿浆进行加热处理,增加了选厂生产能耗和成本。基于“双碳”背景研发赤铁矿常温捕收剂、低温捕收剂是优化赤铁矿浮选药剂制度、增效降耗的关键途径之一。归纳总结了近年来赤铁矿浮选体系的常温/低温新型捕收剂和复配型捕收剂的研究进展,阐述了有利于实现赤铁矿常温/低温浮选过程的药剂特征活性有机基团及其对生产指标的影响,旨在总结并拓宽赤铁矿新型常温/低温浮选捕收剂设计思路,推动赤铁矿常温/低温浮选药剂的研发与应用,进而逐步实现赤铁矿浮选过程的增效降耗。

  • 加载中
  • 图 1  新型脂肪酸类阴离子捕收剂制备流程示意图

    Figure 1. 

    图 2  不同活性基团对新型阴离子捕收剂的浮选效果与温度影响差异

    Figure 2. 

    图 3  新型胺类阳离子捕收剂制备过程

    Figure 3. 

    图 4  引入基团后新型阳离子浮选效果

    Figure 4. 

    图 5  组合捕收剂制备流程

    Figure 5. 

    表 1  传统捕收剂的浮选效果

    Table 1.  Flotation effects of conventional traps

    捕收剂适用浮选
    类型
    铁品位/%铁回收率/%浮选温度/℃
    M203[14]正浮选61.6262.0230~35
    十二烷基
    磺酸钠[15]
    正浮选61.0056.2530
    HD202[16]正浮选66.2487.2530
    JZQ−F[17]反浮选66.5873.63约30
    TD−Ⅱ[18]反浮选67.3282.2735
    GS1[19]反浮选69.0090.0030
    下载: 导出CSV

    表 2  新型阴离子捕收剂的浮选指标

    Table 2.  Flotation index of the new anionic collector

    捕收剂适用浮选
    类型
    精矿铁
    品位/%
    精矿
    回收率/%
    浮选
    温度/℃
    Δ℃
    CY[31]反浮选66.6193.502015
    Bk427[26]反浮选65.2086.601520
    Zk−302[27]正浮选51.3764.211520
    TA−19[32]反浮选65.9285.632015
    CY−411[33]反浮选67.2392.961520
    OMC−1[34]反浮选65.3984.6812~1520~23
    915BM[29]反浮选55.9080.732510
    QD[30]反浮选52↑72.0020~2510~15
    注:Δ℃表示温度与35℃的差值,↑表示某个数据以上。
    下载: 导出CSV

    表 3  新型阳离子捕收剂的浮选效果

    Table 3.  Flotation effects of the new cationic traps

    捕收剂适用浮选
    类型
    精矿铁
    品位/%
    精矿铁
    回收率/%
    浮选
    温度/℃
    Δ℃
    GE−601[45]反浮选69.4198.428~2510~27
    GE−609[46]反浮选67.1283.5510~2515~25
    DCZ[48]反浮选67.3999.005~350~30
    BHMDC[49]反浮选63.0866.0212~1817~23
    十二烷基三甲
    基氯化铵[50]
    反浮选50.00±280.00±225左右10
    ND[51]反浮选66.7293.462510
    注:Δ℃表示温度与35℃的差值。
    下载: 导出CSV

    表 4  组合捕收剂的浮选效果

    Table 4.  Flotation effects of the combined traps

    捕收剂适用浮选类型精矿铁品位/%精矿铁回收率/%浮选温度/℃Δ/℃
    聚氧丙烯—聚氧乙烯枝杈型表
    面活性剂和混合脂肪酸链为C12~C20组合[62]
    反浮选68.1689.932114
    TL−5(脂肪酸LJ与含N螯合
    捕收剂LB按2∶1组合)[63]
    正反选40.4792.502619
    CW−3和LTS按1∶1混合[64]反浮选80.00±280.00±21025
    DJW−Ⅱ与JW−4组合[65]反浮选68.0869.852114
    WM−1[66]正浮选50.6290.222510
    注:Δ℃表示温度与35℃的差值。
    下载: 导出CSV
  • [1]

    宋仁峰, 李维兵, 刘华艳, 等. 我国铁矿石反浮选技术发展综合评述[J]. 金属矿山, 2009(9): 13−18.

    SONG R F, LI W B, LIU H Y, et al. Comprehensive review on the development of reverse flotation technology of iron ore in China[J]. Metal Mine, 2009(9): 13−18.

    [2]

    刘军, 靳淑韵. 中国铁矿资源的现状与对策[J]. 中国矿业, 2009, 18(12): 1−2+19.

    LIU J, JIN S Y. Current situation and countermeasures of iron ore resources in China[J]. China Mining, 2009, 18(12): 1−2+19.

    [3]

    ALINE PEREIRA LEITE NUNES, CLÁUDIO LÚCIO LOPES PINTO, GEORGE EDUARDO SALES VALADO, et al. Floatability studies of wavellite and preliminary results on phosphorus removal from a Brazilian iron ore by froth flotation[J]. Minerals Engineering, 2012(39): 206−212.

    [4]

    余永富, 陈雯, 麦笑宇. 提高铁精矿质量实现高炉节能减排增效[J]. 矿产保护与利用, 2009(1): 13−16.

    YU Y F, CHEN W, MAI X Y. Improve the quality of iron concentrate to achieve blast furnace energy conservation and emission reduction efficiency[J]. Conservation and Utilization of Mineral Resources, 2009(1): 13−16.

    [5]

    吴文红, 吴承优, 王秋林, 等. 高效低温捕收剂选别关宝山铁矿实验[J]. 现代矿业, 2018, 34(1): 136−138+144.

    WU W H, WU C Y, WANG Q L, et al. High−efficiency low−temperature collector selection test of Guanbaoshan Iron Mine[J]. Modern Mining, 2018, 34(1): 136−138+144.

    [6]

    孟晓光. 捕收剂和起泡剂作用机理分析[J]. 煤炭加工与综合利用, 2017(5): 44−46.

    MENG X G. Mechanism analysis of collector and foaming agent[J]. Coal Processing and Comprehensive Utilization, 2017(5): 44−46.

    [7]

    贺寒冰, 何廷树, 王鑫, 等. 矿浆温度对方铅矿浮选效果的影响及机理研究[J]. 矿产保护与利用, 2020, 40(6): 88−94.

    HE H B, HE T S, WANG X, et al. Study on the effect and mechanism of pulp temperature on galena flotation[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 88−94.

    [8]

    杨茂麟, 邓朝勇, 徐本军. 铁矿石浮选药剂的研究现状[J]. 钢铁研究学报, 2011, 23(11): 1−3+46.

    YANG M L, DENG C Y, XU B J. Research status of iron ore flotation reagents[J]. Journal of Iron and Steel Research, 2011, 23(11): 1−3+46.

    [9]

    王涛. 安徽李楼铁矿常温浮选药剂应用之路[J]. 现代矿业, 2020, 36(7): 107−110.

    WANG T. Application of flotation reagent at normal temperature in Lilou Iron Mine, Anhui Province[J]. Modern Mining, 20, 36(7): 107−110.

    [10]

    肖玮, 邵延海, 尉佳怡, 等. 钛铁矿浮选药剂研究现状及展望[J]. 矿产保护与利用, 2021, 41(5): 160−167.

    XIAO W, SHAO Y H, WEI J Y, et al. Research status and prospect of flotation reagents for ilmenite[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 160−167.

    [11]

    余攀, 丁湛, 李春龙, 柏少军, 等. 我国钛铁矿矿石浮选药剂研究进展[J]. 矿产保护与利用, 2020, 40(2): 82−87.

    YU P, DING Z, LI C L, BAI S J, et al. Research progress on flotation reagents for ilmenite ore in China[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 82−87.

    [12]

    张朝宏, 戴惠新. 铁矿石反浮选捕收剂现状及未来发展趋势[J]. 矿产综合利用, 2012(2): 3−6.

    ZHANG C H, DAI H X. Present situation and future development trend of iron ore reverse flotation collector[J]. Multipurpose Utilization of Mineral Resources, 2012(2): 3−6.

    [13]

    任爱军, 孙传尧. 油酸钠作捕收剂时变性淀粉对赤铁矿及石英可浮性的影响[J]. 矿冶, 2018, 27(3): 1−6+12.

    REN A J, SUN C Y. Effect of modified starch on floatability of hematite and quartz when sodium oleate is used as collector[J]. Mining and Metallurgy, 2018, 27(3): 1−6+12.

    [14]

    李志彬, 马洪显. M203捕收剂浮选东鞍山高亚铁难选贫赤铁矿工业实验[J]. 金属矿山, 1994(1): 37−40.

    LI Z B, MA H X. Industrial test on flotation of high ferrous refractory lean hematite in Donganshan by M203 collector[J]. Metal Mine, 1994(1): 37−40.

    [15]

    郑贵山, 刘炯天. 十二烷基磺酸钠浮选赤铁矿的研究[J]. 金属矿山, 2009(9): 70−73.

    ZHENG G S, LIU J T. Study on flotation of hematite with sodium dodecyl sulfonate[J]. Metal Mine, 2009(9): 70−73.

    [16]

    许洪刚, 刘桂云. HD202捕收剂在鞍山式贫赤铁矿酸性正浮选工艺中的实验研究[J]. 金属矿山, 2009(1): 74−77.

    XU H G, LIU G Y. Experimental study on acidic positive flotation process of Anshan−type lean hematite with HD202 collector[J]. Metal Mine, 2009(1): 74−77.

    [17]

    于慧梅, 王化军, 孙传尧. 餐饮废油制备JZQ−F捕收剂反浮选赤铁矿石实验研究[J]. 金属矿山, 2017(11): 64−69.

    YU H M, WANG H J, SUN C Y. Experimental study on reverse flotation of hematite ore by JZQ−F collector from waste cooking oil[J]. Metal Mine, 2017(11): 64−69.

    [18]

    吴中贤, 杨晓, 于晓兵, 等. 响应曲面法优化赤铁矿纳米气泡反浮选实验研究[J]. 黄金, 2023, 44(2): 38−45.

    WU Z X, YANG X, YU X B, et al. Optimization of reverse flotation of hematite nanobubbles by response surface methodology[J]. Gold, 2023, 44(2): 38−45.

    [19]

    任建伟, 王毓华. 铁矿反浮选脱硅的实验研究[J]. 矿产保护与利用, 2004(1): 31−34.

    REN J W, WANG Y H. Experimental study on reverse flotation desilication of iron ore[J]. Conservation and Utilization of Mineral Resources, 2004(1): 31−34.

    [20]

    邹春林, 张范春, 朱一民, 等. 用新型捕收剂DA−1反浮选齐大山选厂混磁精[J]. 金属矿山, 2012(3): 63−65.

    ZOU C L, ZHANG F C, ZHU Y M, et al. Reverse flotation of mixed magnetic concentrate from Qidashan Concentrator with a new collector DA−1[J]. Metal Mine, 2012(3): 63−65.

    [21]

    宋仁峰, 郭客, 张长奎, 等. 新型LKD阴离子反浮选捕收剂的研究[J]. 金属矿山, 2010(3): 57−61.

    SONG R F, GUO K, ZHANG C K, et al. Study on a new LKD anionic reverse flotation collector[J]. Metal Mines, 2010(3): 57−61.

    [22]

    马艺闻, 徐冬林. 赤铁矿常温浮选的阴离子捕收剂研制与实验[J]. 矿冶工程, 2014, 34(6): 53−55.

    MA Y W, XU D L. Development and test of anionic collector for hematite flotation at room temperature[J]. Mining and Metallurgy Engineering, 2014, 34(6): 53−55.

    [23]

    徐冬林, 王长艳, 张玲. 赤铁矿常温浮选的阴离子捕收剂研制与实验[C]//中国矿业科技文汇—2014, 2014: 670−672.

    XU D L, WANG C Y, ZHANG L. Development and test of anionic collector for hematite flotation at room temperature[C]//China Mining Science and Technology Wenhui−2014, 2014: 670−672.

    [24]

    张月. 几种新型脂肪酸类捕收剂改性药剂介绍[J]. 盐湖研究, 2007(2): 34−37.

    ZHANG Y. Introduction of several new fatty acid collectors[J]. Journal of Salt Lake Research, 2007(2): 34−37.

    [25]

    王福良.铜铅锌铁主要硫化氧化矿物浮选的基础理论研究[D].沈阳:东北大学,2011.

    WANG F L. Basic theoretical study on flotation of main sulfide oxide minerals of copper, lead, zinc and iron[D]. Shenyang: Northeast University, 2011.

    [26]

    张行荣, 刘崇峻, 艾晶, 等. 新型耐低温捕收剂BK427在赤铁矿反浮选脱硅中的应用[J]. 中国矿业, 2014, 23(S2): 270−272.

    ZHANG X R, LIU C J, AI J, et al. Application of a novel low−temperature tolerant collector BK427 in reverse flotation desilication of hematite[J]. China Mining Magzine, 2014, 23(S2): 270−272.

    [27]

    朱顺伟, 李孝龙, 李永利, 等. 新型捕收剂在尾矿中赤铁矿回收的应用实验[J]. 烧结球团, 2022, 47(4): 71−76+98.

    ZHU S W, LI X L, LI Y L, et al. Application test of new collector in hematite recovery from tailings[J]. Sintered Pellets, 2022, 47(4): 71−76+98.

    [28]

    夏夕雯, 梁广泉, 朱一民. 新型常温捕收剂DX−1对赤铁矿的浮选性能研究[J]. 金属矿 山, 2018(6): 75−79.

    XIA X W, LIANG G Q, ZHU Y M. Study on the flotation performance of a new normal temperature collector DX−1 for hematite[J]. Metal Mines, 2018(6): 75−79.

    [29]

    闵程, 胡向梅, 张汉泉. 复配阴离子捕收剂在高磷鲕状赤铁矿反浮选中的应用[J]. 矿冶工程, 2017, 37(2): 49−53.

    MIN C, HU X M, ZHANG H Q. Application of compound anionic collector in reverse flotation of high phosphorus oolitic hematite[J]. Mining and Metallurgical Engineering, 2017, 37(2): 49−53.

    [30]

    董怡斌, 强敏, 段正义, 等. QD捕收剂对鄂西高磷鲕状赤铁矿的反浮选效果[J]. 金属矿 山, 2010(2): 62−65.

    DONG Y B, QIANG M, DUAN Z Y, et al. Reverse flotation effect of QD collector on high phosphorus oolitic hematite in western Hubei[J]. Metal Mine, 2010(2): 62−65.

    [31]

    王涛, 龚豪, 武利朔, 等. 安徽李楼镜铁矿低温捕收剂反浮选实验研究[J]. 矿产保护与利用, 2015(3): 34−37.

    WANG T, GONG H, WU L S, et al. Experimental study on low temperature collector reverse flotation of Anhui Lilou specularite[J]. Conservation and Utilization of Mineral Resources, 2015(3): 34−37.

    [32]

    罗光明. 耐低温捕收剂TA−19在李楼铁矿的研究及应用[J]. 矿业工程, 2020, 18(5): 41−44.

    LUO G M. Research and application of low temperature resistant collector TA−19 in Lilou Iron Mine[J]. Mining Engineering, 2020, 18(5): 41−44.

    [33]

    李文风, 刘旭. 铁矿低温捕收剂CY−411的研制与应用实验研究[J]. 金属材料与冶金工程, 2014, 42(4): 42−44+54.

    LI W F, LIU X. Development and application of low temperature collector CY−411 for iron ore[J]. Metallic Materials and Metallurgical Engineering, 2014, 42(4): 42−44+54.

    [34]

    高野, 张亚辉, 周南, 等. 新型捕收剂在宣龙鲕状赤铁矿反浮选中的实验研究[J]. 矿产保护与利 用, 2017(5): 34−37+43.

    GAO Y, ZHANG Y H, ZHOU N, et al. Experimental study of new collectors in reverse flotation of Xuanlong oolitic hematite[J]. Conservation and Utilization of Mineral Resources, 2017(5): 34−37+43.

    [35]

    朱一民, 刘杰, 李艳军. 非硫化矿浮选药剂作用原理[M]. 北京: 冶金工业出版社, 2021

    ZHU Y M, LIU J, LI Y J. Action principle of non−sulfide ore flotation reagent[M]. Beijing: Metallurgical Industry Press, 2021.

    [36]

    刘文宝. 赤铁矿反浮选高选择性阳离子捕收剂的合成及浮选性能研究[D]. 沈阳: 东北大学, 2020.

    LIU W B. Synthesis and flotation performance of highly selective cationic collector for reverse flotation of hematite[D]. Shenyang: Northeast University, 2020.

    [37]

    Weidi Z, Shuang L, Qilong R, et al. Proposing a novel factor influencing flotation collector abilities to collect minerals by comparing two cationic collectors N, N−bis(2−hydroxy−3−chloropropyl) dodecylamine and dodecylamine[J]. Applied Surface Science, 2023, 640.

    [38]

    Weichao L, Wenbao L, Kelin T, et al. Synthesis and flotation performance of a novel low−foam viscous cationic collector based on hematite reverse flotation desilication system[J]. Minerals Engineering, 2023, 201.

    [39]

    Zhongxian W, Dongping T, Youjun T, et al. A novel cationic collector for silicon removal from collophane using reverse flotation under acidic conditions[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(6):1038-1047.

    [40]

    刘文宝, 刘文刚, 段浩, 等. 阳离子捕收剂及其分子结构设计理论研究进展[J]. 金属矿山, 2019(9): 15−21.

    LIU W B, LIU W G, DUAN H, et al. Research progress of cationic collector and its molecular structure design theory[J]. Metal Mine, 2019(9): 15−21.

    [41]

    余新阳, 钟宏, 刘广义. 阳离子反浮选脱硅捕收剂研究现状[J]. 轻金属, 2008(6): 6−10.

    YU X Y, ZHONG H, LIU G Y. Research status of cationic reverse flotation desilication collector[J]. Light Metals, 2008(6): 6−10.

    [42]

    张永, 钟宏, 谭鑫, 等. 阳离子捕收剂研究进展[J]. 矿产保护与利用, 2011(3): 44−49.

    ZHANG Y, ZHONG H, TAN X, et al. Research progress of cationic collectors[J]. Conservation and Utilization of Mineral Resources, 2011(3): 44−49.

    [43]

    PANXING Z, WENGANG L, WENBAO L, et al. Novel low−foam viscous cationic collector 2−[2−(Tetradecylamino)ethoxy]ethanol: Design, synthesis, and flotation performance study to quartz[J]. Separation and Purification Technology, 2023, 307. DOI.org/10.1016/j.seppur.2022.122633

    [44]

    王伟之, 刘泽伟, 王立宇, 等. 司家营铁矿阳离子反浮选降硅正交实验[J]. 矿产综合利用, 2016(6): 35−38.

    WANG W Z, LIU Z W, WANG L Y, et al. Sijiaying iron ore cationic reverse flotation orthogonal test[J]. Multipurpose Utilization of Mineral Resources, 2016(6): 35−38.

    [45]

    杨雪. 新型捕收剂在尖山铁精矿反浮选中的实验探讨[J]. 华北国土资源, 2012(3): 127−129.

    YANG X. Experimental study of new collectors in reverse flotation of Jianshan iron concentrate[J]. North China Land Resources, 2012(3): 127−129.

    [46]

    王春梅, 葛英勇, 王凯金, 等. GE−609捕收剂对齐大山赤铁矿反浮选的初探[J]. 有色金属(选矿部分), 2006(4): 41−43.

    WANG C M, GE Y Y, WANG K J, et al. Preliminary study on reverse flotation of Qidashan hematite with GE−609 collector[J]. Nonferrous Metals(Mineral Processing Section), 2006(4): 41−43.

    [47]

    葛英勇. 新型捕收剂烷基多胺醚(GE−609)的合成及浮选性能研究[D]. 武汉: 武汉理工大学, 2010.

    GE Y Y. Synthesis and flotation performance of a new collector alkyl polyamine ether ( GE−609 )[D]. Wuhan: Wuhan University of Technology, 2010.

    [48]

    朱一民, 乘舟越洋, 骆斌斌. 一种新型阳离子捕收剂DCZ浮选性能研究[J]. 矿产综合利用, 2017(1): 32−36.

    ZHU Y M, CHENG Z Y Y, LUO B B. Study on flotation performance of a new cationic collector DCZ[J]. Multipurpose Utilization of Mineral Resources, 2017(1): 32−36.

    [49]

    佟柯霖, 刘文宝, 刘文刚, 等. 季铵化对阳离子捕收剂N, N−十二烷基二乙醇胺性能的影响研究[J]. 金属矿山, 2021(12): 28−33.

    TONG K L, LIU W B, LIU W G, et al. Effect of quaternization on the performance of cationic collector N, N−dodecyldiethanolamine[J]. Metal Mine, 2021(12): 28−33.

    [50]

    周永锋, 罗溪梅, 宋水祥, 等. 四种阳离子捕收剂对赤铁矿和石英浮选行为的影响[J]. 矿产保护与利用, 2020, 40(2): 56−61.

    ZHOU Y F, LUO X M, SONG S X, et al. Effects of four cationic collectors on flotation behavior of hematite and quartz[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 56−61.

    [51]

    刘文刚, 魏德洲, 崔宝玉, 等. 新型捕收剂在赤铁矿反浮选中的应用[J]. 东北大学学报(自然科学版), 2011, 32(4): 575−578.

    LIU W G, WEI D Z, CUI B Y, et al. Application of new collectors in reverse flotation of hematite[J]. Journal of Northeastern University (Natural Science Edition), 2011, 32(4): 575−578.

    [52]

    王本英, 徐新阳, 陈熙, 等. 十二烷基胺类捕收剂的取代基基因特性对其浮选性能的影响研究[J]. 金属矿山, 2020(6): 31−35.

    WANG B Y, XU X Y, CHEN X, et al. Study on the effect of substituent gene characteristics of dodecylamine collectors on their flotation performance[J]. Metal Mines, 2020(6): 31−35.

    [53]

    王纪镇, 印万忠, 刘明宝, 等. 浮选组合药剂协同效应定量研究[J]. 金属矿山, 2013(5): 62−66.

    WANG J Z, YIN W Z, LIU M B, et al. Quantitative study on synergistic effect of flotation combined reagents[J]. Metal Mines, 2013(5): 62−66.

    [54]

    刘文宝, 甘琦强, 刘文刚, 等. 新型组合捕收剂对锂云母、钠长石和石英的浮选性能研究[J]. 矿产保护与利用, 2023, 43(3): 34−42.

    LIU W B, GAN Q Q, LIU W G, et al. Study on the flotation performance of new combined collectors for lepidolite, albite and quartz[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 34−42.

    [55]

    卢颖. 关于组合药剂在浮选工艺应用的探讨[J]. 中国矿业, 2000(S1): 269−271.

    LU Y. Discussion on the application of combined reagents in flotation process[J]. China Mining Magazine, 2000(S1): 269−271.

    [56]

    卢颖, 孙胜义. 组合药剂的发展及规律[J]. 矿业工程, 2007(6): 42−44. doi: 10.3969/j.issn.1671-8550.2007.06.017

    LU Y, SUN S Y. The Development and Law of Combined Reagents[J]. Mining Engineering, 2007(6): 42−44. doi: 10.3969/j.issn.1671-8550.2007.06.017

    [57]

    Qiang L, Yating L, Jiyan S, et al. Synergistic detoxification by combined reagents and safe filling utilization of cyanide tailings[J]. Chemosphere, 2022, 312(P1).

    [58]

    刘述忠, 李晓阳, 徐晓军, 等. 捕收剂组合使用的研究概况[J]. 云南冶金, 2002(4): 17−20.

    LIU S Z, LI X Y, XU X J, et al. Research on the combination of collectors[J]. Yunnan Metallurgy, 2002(4): 17−20.

    [59]

    MAITI, K, BHATTACHARYA, SC, MOULIK, SP, et al. Physicochemistry of the binary interacting mixtures of cetylpyridinium chloride (CPC) and sodium dodecylsulfate (SDS) with special reference to the catanionic ion−pair (coacervate) behavior[J]. Colloids and Surfaces, A. Physicochemical and Engineering Aspects, 2010, 355(1/3): 88−98.

    [60]

    Qian Y, Ding W, Wang Z, et al. New combined depressant/collectors system for the separation of powellite from dolomite and the interaction mechanism[J]. Minerals, 2020, 10(3): 291.

    [61]

    QIONGYIN M, HANYU Z, LEMING O. Flotation separation of chalcopyrite and talc using calcium ions and calcium lignosulfonate as a combined depressant[J]. Metals, 2021, 11(4): 651.

    [62]

    姜永良, 付泳贺, 姜效军, 等. 组合阴离子捕收剂对石英的吸附机理研究[J]. 金属矿山, 2020(11): 118−123.

    JIANG Y L, FU Y H, JIANG X J, et al. Adsorption mechanism of quartz by combined anionic collectors[J]. Metal Mines, 2020(11): 118−123.

    [63]

    仝丽娟, 朱一民, 李艳军, 等. 组合药剂TL−5对东鞍山赤铁矿的捕收性能研究[J]. 现代矿业, 2010, 26(8): 34−37.

    TONG L J, ZHU Y M, LI Y J, et al. Study on the collecting performance of combined reagent TL−5 for Donganshan hematite[J]. Modern Mining, 2010, 26(8): 34−37.

    [64]

    曹少航, 印万忠, 姚金, 等. 组合捕收剂在赤铁矿常温反浮选中的应用[J]. 金属矿山, 2016(12): 77−81. doi: 10.3969/j.issn.1001-1250.2016.12.017

    CAO S H, YIN W Z, YAO J, et al. Application of combined collectors in reverse flotation of hematite at room temperature[J]. Metal Mine, 2016(12): 77−81. doi: 10.3969/j.issn.1001-1250.2016.12.017

    [65]

    徐小革, 乘舟越洋, 朱一民, 等. 复合捕收剂在铁矿石反浮选中的协同作用[J]. 金属矿山, 2019(2): 92−96.

    XU X G, CHENG Z Y Y, ZHU Y M, et al. Synergistic effect of composite collectors in reverse flotation of iron ore[J]. Metal Mine, 2019(2): 92−96.

    [66]

    王小飞, 米金月, 陈先龙, 等. 组合捕收剂WM−1对东鞍山赤铁矿的捕收性能[J]. 金属矿山, 2010(8): 51−54.

    WANG X F, MI J Y, CHEN X L, et al. Collection performance of combined collector WM−1 for Donganshan hematite[J]. Metal Mine, 2010(8): 51−54.

    [67]

    祁忠旭, 韩远燕, 孙大勇, 等. 提高云南某超贫微细赤铁矿选矿回收率的研究[J]. 烧结球团, 2020, 45(5): 59−62.

    QI Z X, HAN Y Y, SUN D Y, et al. Study on improving the recovery rate of an ultra−low fine hematite in Yunnan[J]. Sintered pellets, 2020, 45(5): 59−62.

    [68]

    纪振明. 云南某难选赤铁矿选矿实验[J]. 现代矿业, 2018, 34(11): 103−105+123. doi: 10.3969/j.issn.1674-6082.2018.11.024

    JI Z M. Mineral processing test of a refractory hematite in Yunnan[J]. Modern Mining, 2018, 34(11): 103−105+123. doi: 10.3969/j.issn.1674-6082.2018.11.024

  • 加载中

(5)

(4)

计量
  • 文章访问数:  330
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2023-09-15
刊出日期:  2023-12-25

目录