卤代改性月桂酸捕收剂WN−01对氟碳铈矿的捕收性能研究

池汝安, 王楠, 郭文达, 张臻悦, 刘德峰, 李新宜. 卤代改性月桂酸捕收剂WN−01对氟碳铈矿的捕收性能研究[J]. 矿产保护与利用, 2024, 44(1): 74-81. doi: 10.13779/j.cnki.issn1001-0076.2024.01.010
引用本文: 池汝安, 王楠, 郭文达, 张臻悦, 刘德峰, 李新宜. 卤代改性月桂酸捕收剂WN−01对氟碳铈矿的捕收性能研究[J]. 矿产保护与利用, 2024, 44(1): 74-81. doi: 10.13779/j.cnki.issn1001-0076.2024.01.010
CHI Ru’an, WANG Nan, GUO Wenda, ZHANG Zhenyue, LIU Defeng, LI Xinyi. Flotation Performance of Bastnaesite with a Halogenated Lauric Acid Collector WN−01[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 74-81. doi: 10.13779/j.cnki.issn1001-0076.2024.01.010
Citation: CHI Ru’an, WANG Nan, GUO Wenda, ZHANG Zhenyue, LIU Defeng, LI Xinyi. Flotation Performance of Bastnaesite with a Halogenated Lauric Acid Collector WN−01[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 74-81. doi: 10.13779/j.cnki.issn1001-0076.2024.01.010

卤代改性月桂酸捕收剂WN−01对氟碳铈矿的捕收性能研究

  • 基金项目: 湖北省自然科学基金创新群体项目(2023AFA044);湖北省教育厅科学技术研究项目(Q2021505);中国博士后科学基金项目(2023M731041)
详细信息
    作者简介: 池汝安(1959—),男,博士,教授,博士生导师,研究方向:稀土矿物加工及提取,E-mail:rac@wit.edu.cn
    通讯作者: 郭文达(1991—),男,博士,副教授,硕士生导师,研究方向:矿物加工技术与理论,E-mail:gedaya123@163.com
  • 中图分类号: TD923+.14;TD955

Flotation Performance of Bastnaesite with a Halogenated Lauric Acid Collector WN−01

More Information
  • 为解决氟碳铈矿浮选所用羟肟酸类捕收剂价格高、用量大、毒性强、难降解且起泡性较弱等问题,研发了一种新型卤代改性月桂酸捕收剂WN−01用于氟碳铈矿浮选提纯。实验结果表明,相比改性前的月桂酸,月桂酸卤代改性捕收剂WN−01取得的最佳粗精矿REO品位和回收率可分别提高4.45百分点和36.86百分点。改性脂肪酸捕收剂WN−01浮选氟碳铈矿的适宜条件为矿浆pH为8.5,矿浆温度为30 ℃,捕收剂用量为150 mg/L,抑制剂水玻璃用量为120 mg/L。在该条件下,REO品位为26.57%的氟碳铈矿经1次粗选3次精选2次扫选开路浮选,可得到REO品位为49.18%、回收率为80.72%的浮选精矿。产品鉴定结果表明,浮选精矿主要成分为氟碳铈矿,含极少量萤石,浮选尾矿主要是石英和硅灰石,改性脂肪酸捕收剂WN−01表现出了优异的捕收性能和选择性,可替代羟肟酸类捕收剂,实现氟碳铈矿绿色、高效浮选。

  • 加载中
  • 图 1  原矿(a)和预富集矿样(b)X射线衍射图谱

    Figure 1. 

    图 2  浮选条件实验流程

    Figure 2. 

    图 3  捕收剂用量对浮选指标的影响

    Figure 3. 

    图 4  水玻璃用量对浮选指标的影响

    Figure 4. 

    图 5  矿浆pH值对浮选指标的影响

    Figure 5. 

    图 6  叶轮转速对浮选指标的影响

    Figure 6. 

    图 7  浮选时间对浮选指标的影响

    Figure 7. 

    图 8  矿浆温度对浮选指标的影响

    Figure 8. 

    图 9  开路实验流程

    Figure 9. 

    图 10  精矿(a)和尾矿(b)X射线衍射图谱

    Figure 10. 

    图 11  精矿扫描电镜图(a)、能谱面分布图(b)、A点能谱图(c)及B点能谱图(d)

    Figure 11. 

    图 12  尾矿扫描电镜图(a)和能谱面分布图(b)、图(c)、图(d)

    Figure 12. 

    表 1  开路试验结果

    Table 1.  Results of open−circuit flotation

    产品名称产率%REO品位%回收率%
    精矿44.1249.1880.72
    中矿112.736.633.14
    中矿26.5818.394.5
    中矿39.227.932.72
    中矿410.084.061.52
    中矿55.4631.796.45
    尾矿11.812.170.95
    原矿100.0026.88100.00
    下载: 导出CSV
  • [1]

    时晗, 何晓娟, 胡真, 等. 我国稀土矿选矿近十年研究现状及发展前景[J]. 有色金属(选矿部分)2021, (4): 18−25.

    SHI H, HE X J, HU Z, et al. Research status and development prospects of rare earth ore dressing in China in recent ten years[J]. Nonferrous Metals(mineral processing section), 2021, (4): 18−25.

    [2]

    LIU Y, HOU Z, ZHANG Q, et al. Zircon U−Pb ages of the Mianning−Dechang syenites, Sichuan province, southwestern China: constraints on the giant REE mineralization belt and its regional geological setting−science direct[J]. Ore Geology Reviews, 2015, 64(8): 554−568.

    [3]

    胡朋, 刘国平, 江思宏, 等. 全球稀土矿床的主要类型和成因研究进展[J]. 矿产勘查, 2023, 14(5): 691−700.

    HU P, LIU G P, JIANG S H, et al. Main types and advances on ore genesis of REE deposits worldwide[J]. Mineral Exploration, 2023, 14(5): 691−700.

    [4]

    YANG Y H, WU F Y, LI Q, et al. In situ U−Th−Pb dating and Sr−Nd isotope analysis of bastnaesite by LA−(MC)−ICP−MS[J]. Geostandards and Geoanalytical Research, 2019, 43(4): 543−565. doi: 10.1111/ggr.12297

    [5]

    KUMRI A, PANDA R, JHA M K, et al. Process development to recover rare earth metals from monazite mineral: A review[J]. Minerals Engineering, 2015, 79(5): 102−115.

    [6]

    谢东岳, 伏彩萍, 唐忠阳, 等. 我国稀土资源现状与冶炼技术进展[J]. 矿产保护与利用, 2021, 41(1): 152−160.

    XIE D Y, FU C P, TANG Z Y, et al. Current status of rare earth resources in China and progress of extracting technology[J]. Conservation and Utilization of Mineral Resources, 2021, 41(1): 152−160.

    [7]

    王威, 柳林, 刘红召, 等. 稀土资源提取技术进展及趋势[J]. 矿产保护与利用, 2020, 40(5): 32−36.

    WANG W, LIU L, LIU H Z, et al. Progress and trend of rare earth resources extraction technology[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 32−36.

    [8]

    LI X C, YANG K F, SPADLER C, et al. The effect of fluid−aided modification on the Sm−Nd and Th−Pb geochronology of monazite and bastnaesite: implication for resolving complex isotopic age data in REE ore systems[J]. Geochimica et Cosmochimica Acta, 2021, 300(2): .1−24.

    [9]

    智文科,王飞,陈晓怡,等.钪的资源及提炼技术研究进展[J/OL].中国稀土学报: 2022, 1−27. http://kns.cnki.net/kcms/detail/11.2365.TG.20220825.1038.002.html.

    ZHI W K, WANG F, CHEN X Y, et al. Research progress of scandium resources and refining technology of scandium[J/OL]. Journal of the Chinese Society of Rare Earths: 2022, 1-27. http://kns.cnki.net/kcms/detail/11.2365.TG.20220825.1038.002.html.

    [10]

    彭美旺, 杨富强, 陈红康. 混浮—强磁法从某尾矿中回收稀土、萤石[J]. 铜业工程, 2021(3): 44−49. doi: 10.3969/j.issn.1009-3842.2021.03.012

    PENG M W, YANG F Q, CHEN H K. Recovery of rare earth and fluorite from tailings by mixed flotation−high intensity magnetic method[J]. Copper Engineering, 2021(3): 44−49. doi: 10.3969/j.issn.1009-3842.2021.03.012

    [11]

    徐金球, 徐晓军, 王景伟. 1−羟基2−萘甲羟肟酸的合成及对稀土矿物的捕收性能[J]. 有色金属, 2002(3): 72−73.

    XU J Q, XU X J, WANG J W. Synthesis of 1−hydroxy−2−naphthylhydroximic acid and application to collecting rare earth minerals[J]. Nonferrous Metals, 2002(3): 72−73.

    [12]

    梅建庭, 杨威, 刘养春, 等. 一种螯合型稀土捕收剂及其制备方法: CN114276276A[P]. 2022−04−05.

    MEI J T, YANG W, LIU Y C, et al. A chelating rare earth collector and its preparation method: CN114276276A[P]. 2022−04−05.

    [13]

    杨威, 梅建庭, 刘浩林, 等. 一种难选稀土矿捕收剂及其制备方法: CN113522533A[P]. 2021−10−22.

    YANG W, MEI J T, LIU H L, et al. A difficult to select rare earth ore collector and its preparation method: CN113522533A[P]. 2021−10−22.

    [14]

    王震,刘殿文,王亮,等.矿物型稀土捕收剂及其机理研究进展[J/OL].中国稀土学报, 2023, 1−16. http://kns.cnki.net/kcms/detail/11.2365.TG.20231123.1546.002.html.

    WANG Z, LIU D W, WANG L, et al. Research progress of collectors and flotation mechanism for rare earth mineral[J/OL]. Journal of the Chinese Society of Rare Earths, 2023, 1−16. http://kns.cnki.net/kcms/detail/11.2365.TG.20231123.1546.002.html.

    [15]

    邱显扬, 何晓娟, 饶金山, 等. 油酸钠浮选氟碳铈矿机制研究[J]. 稀有金属, 2013, 37(3): 422−428. doi: 10.3969/j.issn.0258-7076.2013.03.015

    QIU X Y, HE X J, RAO J S, et al. Flotation mechanism of sodium oleate on bastnaesite[J]. Chinese Journal of Rare Metals, 2013, 37(3): 422−428. doi: 10.3969/j.issn.0258-7076.2013.03.015

    [16]

    PAVEZ O, BRANDAO P, PERES A. Adsorption of oleate and octyl−hydroxamate on to rare earths minerals[J]. Mine E, 1996, 9(3): 357−366. doi: 10.1016/0892-6875(96)00020-9

    [17]

    ZHOU F, WANG L X, XU Z H, et al. Interaction of reactive oily bubble in flotation of bastnaesite[J]. J. Rare E, 2014, 32(8): 772−778. doi: 10.1016/S1002-0721(14)60139-3

    [18]

    BALA RAMV. Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact[J]. Geoscience Frontiers, 2019, 10(4): 1285−1303. doi: 10.1016/j.gsf.2018.12.005

    [19]

    毛英. 四川稀土矿(氟碳铈矿)稀土总量的测定方法[J]. 四川地质学报, 2000(1): 79−80.

    MAO Y. A method for determination of total REE in bastnaesite, Sichuan[J]. Acta Geologica Sichuan, 2000(1): 79−80.

    [20]

    孙立强. 氟碳铈矿钙化分解及浮选分离的研究[D]. 沈阳: 东北大学, 2019.

    SUN L Q. A Study on the technology calcification decomposition and flotation separation of bastnaesite concentrates[D]. Shenyang: Northeastern University, 2019.

  • 加载中

(12)

(1)

计量
  • 文章访问数:  131
  • PDF下载数:  23
  • 施引文献:  0
出版历程
收稿日期:  2023-11-08
刊出日期:  2024-02-15

目录