矿井巷道风速智能感知技术研究进展

陈炫中, 王孝东, 杨懿杰, 吕玉琪, 刘唱, 杜青文, 谢博. 矿井巷道风速智能感知技术研究进展[J]. 矿产保护与利用, 2024, 44(4): 124-134. doi: 10.13779/j.cnki.issn1001-0076.2024.04.014
引用本文: 陈炫中, 王孝东, 杨懿杰, 吕玉琪, 刘唱, 杜青文, 谢博. 矿井巷道风速智能感知技术研究进展[J]. 矿产保护与利用, 2024, 44(4): 124-134. doi: 10.13779/j.cnki.issn1001-0076.2024.04.014
CHEN Xuanzhong, WANG Xiaodong, YANG Yijie, LYU Yuqi, LIU Chang, DU Qingwen, XIE Bo. Research Progress on Intelligent Perception Technology for Wind Speed in Mine Tunnels[J]. Conservation and Utilization of Mineral Resources, 2024, 44(4): 124-134. doi: 10.13779/j.cnki.issn1001-0076.2024.04.014
Citation: CHEN Xuanzhong, WANG Xiaodong, YANG Yijie, LYU Yuqi, LIU Chang, DU Qingwen, XIE Bo. Research Progress on Intelligent Perception Technology for Wind Speed in Mine Tunnels[J]. Conservation and Utilization of Mineral Resources, 2024, 44(4): 124-134. doi: 10.13779/j.cnki.issn1001-0076.2024.04.014

矿井巷道风速智能感知技术研究进展

  • 基金项目: 昆明理工大学引进人才科研启动基金项目(KKSY201721032)
详细信息
    作者简介: 陈炫中(1998—),男,广西北海人,硕士研究生,主要从事矿井通风与安全等方面的研究工作,E-mail:1210626072@qq.com; 王孝东,副教授,毕业于北京科技大学土木与环境工程学院,于2015年获得采矿工程工学博士学位。主要研究方向是矿井通风与安全、矿山数字化等。先后主持或参与省部级项目及校企合作项目10余项;在国内外学术期刊发表论文40余篇,其中SCI、EI论文20余篇,获授权发明专利10余项、实用新型专利10余项
    通讯作者: 王孝东(1977—),男,云南玉溪人,副教授,硕士研究生导师,主要从事矿井通风与安全、数字化矿山等方面研究工作,E-mail:angiaoongwxd@163.com
  • 中图分类号: TD72

Research Progress on Intelligent Perception Technology for Wind Speed in Mine Tunnels

More Information
  • 矿井通风系统智能化是推进智能矿山建设、保障矿井安全生产的关键环节,通风参数作为基础数据来源,是矿井通风系统智能化建设的重要保障。而矿井巷道风速智能感知技术发展过程中存在传感器精度及可靠性优化、传感器测风误差修正、平均风速智能快速预测、传感器布设优化等关键科学技术问题有待改善。综述了传感器技术、高精度智能风速预测等研究成果,总结了各项技术的优劣及适用范围,提出了基于PSO−GRU神经网络构建的巷道断面平均风速智能预测模型,该模型能够有效提高矿井巷道平均风速测算的精度,可为通风参数智能感知技术的发展提供理论参考。

  • 加载中
  • 图 1  矿井智能通风管控系统框架结构

    Figure 1. 

    图 2  矿井巷道风速智能感知技术

    Figure 2. 

    图 3  涡街式超声波风速传感器测风示意图

    Figure 3. 

    图 4  超声波时差法风速传感器测风示意图

    Figure 4. 

    图 5  巷道断面风速场及测点分布

    Figure 5. 

    图 6  PSO−GRU预测模型算法流程

    Figure 6. 

    图 7  三种模型预测值与真实值的对比

    Figure 7. 

    表 1  各类型风速传感器对比

    Table 1.  Comparison of various types of wind speed sensors

    机械式风速传感器 压差式风速传感器 超声波风速传感器
    涡街式传感器 时差法传感器
    优点:结构简单,成本低,易于维护;
    缺点:恶劣环境中损耗快,响应速度慢
    优点:结构简单,低速响应速度快;
    缺点:皮托管易受粉尘影响
    优点:精度高,量程广,不易损耗;
    缺点:影响风流流场,易受粉尘影响
    优点:测量范围广,精度高,无易损耗部件
    下载: 导出CSV

    表 2  部分巷道断面风速数据集

    Table 2.  Partial wind speed dataset of tunnel cross−sections

    数据
    编号
    输入数据 输出数据:
    平均风速
    /(m·s−1)
    粗糙度
    常数
    壁面
    粗糙度/m
    测点
    高度/m
    测点
    横坐标/m
    测点风速
    /(m·s−1)
    1 0.5 0.01 0.3 2.37 0.99 1
    2 0.6 0.05 2.11 2.57 7.31 5
    3 0.8 0.02 2.96 2.55 3.49 3
    4 1 0.03 2.46 1.00 4.47 4
    5 1 0.04 1.01 1.43 2.17 2
    120 0.5 0.03 2.88 3.18 11.80 10
    下载: 导出CSV

    表 3  三种模型对比结果

    Table 3.  Comparison results of three models

    模型 RMSE MAE R2
    PSO−GRU 0.9899 0.7901 0.9309
    GRU 1.5282 0.9691 0.8129
    GA−BP 1.0551 0.6010 0.8707
    下载: 导出CSV
  • [1]

    郭奇峰, 蔡美峰, 吴星辉, 等. 面向2035年的金属矿深部多场智能开采发展战略[J]. 工程科学学报, 2022, 44(4): 476−486.

    GUO Q F, CAI M F, WU X H, et al. Development strategy for deep multi site intelligent mining of metal mines towards 2035[J]. Journal of Engineering Science, 2022, 44(4): 476−486.

    [2]

    国家发展改革委, 能源局, 应急部, 等. 关于加快煤矿智能化发展的指导意见[EB/OL]. 2020−02−25.

    Development and Reform Commission, Energy Bureau, Emergency Department, et al. Guiding opinions on accelerating the development of intelligent coal mines[EB/OL]. 2020−02−25.

    [3]

    周福宝, 魏连江, 夏同强, 等. 矿井智能通风原理、关键技术及其初步实现[J]. 煤炭学报, 2020, 45(6): 2225−2235.

    ZHOU F B, WEI L J, XIA T Q, et al. Principles, key technologies, and preliminary implementation of intelligent ventilation in mines[J]. Journal of China Coal Society, 2020, 45(6): 2225−2235.

    [4]

    周福宝, 辛海会, 魏连江, 等. 矿井智能通风理论与技术研究进展[J]. 煤炭科学技术, 2023, 51(1): 313−328.

    ZHOU F B, XIN H H, WEI L J, et al. Research progress in theory and technology of intelligent ventilation in mines[J]. Coal Science and Technology, 2023, 51(1): 313−328.

    [5]

    刘剑. 矿井智能通风关键科学技术问题综述[J]. 煤矿安全, 2020, 51(10): 108−111+117.

    LIU J. Summary of key scientific and technological issues in intelligent ventilation of mines[J]. Safety in Coal Mines, 2020, 51(10): 108−111+117.

    [6]

    卢新明, 尹红. 矿井通风智能化理论与技术[J]. 煤炭学报, 2020, 45(6): 2236−2247.

    LU X M, YIN H. Theory and technology of intelligent mine ventilation[J]. Journal of China Coal Society, 2020, 45(6): 2236−2247.

    [7]

    张浪, 刘彦青. 矿井智能通风与关键技术研究[J]. 煤炭科学技术, 2024, 52(1): 178−195.

    ZHANG L, LIU Y Q. Research on intelligent ventilation and key technologies in mines[J]. Coal Science and Technology, 2024, 52(1): 178−195.

    [8]

    郭炜舟, 沈斌, 汪洋, 等. 葫芦素煤矿智能通风系统建设与应用[J]. 煤矿安全, 2022, 53(9): 233−238.

    GUO W Z, SHEN B, WANG Y, et al. Construction and application of intelligent ventilation system in hulusu coal mine[J]. Safety in Coal Mines, 2022, 53(9): 233−238.

    [9]

    陈重新, 肖务里, 胡新明. 智能局部通风系统介绍[J]. 江西煤炭科技, 2009(3): 109−112.

    CHEN C X, XIAO W L, HU X M. Introduction to intelligent local ventilation system[J]. Jiangxi Coal Technology, 2009(3): 109−112.

    [10]

    栾王鹏. 矿井智能通风与实时监测控制系统[J]. 山东煤炭科技, 2019(5): 183−185+191.

    LUAN W P. Intelligent ventilation and real−time monitoring control system for mines[J]. Shandong Coal Technology, 2019(5): 183−185+191.

    [11]

    方博, 马恒. 运用监控数据的矿井通风网络动态解算及应用[J]. 辽宁工程技术大学学报(自然科学版), 2016, 35(12): 1439−1442.

    FANG B, MA H. Dynamic calculation and application of mine ventilation network using monitoring data[J]. Journal of Liaoning University of Engineering and Technology (Natural Science Edition), 2016, 35(12): 1439−1442.

    [12]

    杨杰, 赵连刚, 全芳. 煤矿通风系统现状及智能通风系统设计[J]. 工矿自动化, 2015, 41(11): 74−77.

    YANG J, ZHAO L G, QUAN F. The current situation of coal mine ventilation system and the design of intelligent ventilation system[J]. Industrial and Mining Automation, 2015, 41(11): 74−77.

    [13]

    孙亮, 孙珍平. 矿井大断面巷道风速分布规律及风量监测研究[J]. 煤炭技术, 2022, 41(4): 97−100.

    SUN L, SUN Z P. Research on the distribution law of wind speed and wind volume monitoring in large section tunnels of mines[J]. Coal technology, 2022, 41(4): 97−100.

    [14]

    王恒, 邱黎明, 何学秋, 等. 不同因素下煤矿巷道断面风速分布规律研究[J]. 矿业研究与开发, 2022, 42(7): 125−132.

    WANG H, QIU L M, HE X Q, et al. Research on the distribution law of wind speed at the cross−section of coal mine tunnels under different factors[J]. Mining Research and Development, 2022, 42(7): 125−132.

    [15]

    武宇鹏. 井下巷道不同支护形式断面风速的分析研究[J]. 机械管理开发, 2020, 35(10): 116−118.

    WU Y P. Analysis and research on cross−sectional wind speed of different support forms in underground tunnels[J]. Mechanical Management Development, 2020, 35(10): 116−118.

    [16]

    胡建华, 赵阳, 周坦, 等. 顶板不平整巷道断面风速分布的多因素影响(英文)[J]. 中南大学学报, 2021, 28(7): 2067−2078. doi: 10.1007/s11771-021-4753-3

    HU J H, ZHAO Y, ZHOU T, et al. Multiple factors affecting the distribution of wind speed on the cross−section of uneven roof tunnels[J]. Journal of Central South University, 2021, 28(7): 2067−2078. doi: 10.1007/s11771-021-4753-3

    [17]

    王翰锋. 基于Fluent巷道断面平均风速点定位监测模拟研究[J]. 煤炭科学技术, 2015, 43(8): 92−96.

    WANG H F. Simulation study on positioning and monitoring of average wind speed points in tunnel sections based on fluent[J]. Coal Science and Technology, 2015, 43(8): 92−96.

    [18]

    宋莹, 刘剑, 李雪冰, 等. 矿井巷道风流平均风速分布规律的试验与模拟研究[J]. 中国安全科学学报, 2016, 26(6): 146−151.

    SONG Y, LIU J, LI X B, et al. Experimental and simulation research on the distribution law of average wind speed in mine tunnels[J]. Chinese Journal of Safety Sciences, 2016, 26(6): 146−151.

    [19]

    丁翠, 何学秋, 聂百胜. 矿井通风巷道风流分布“关键环”数值与实验研究[J]. 辽宁工程技术大学学报(自然科学版), 2015, 34(10): 1131−1136.

    DING C, HE X Q, NIE B S. Numerical and experimental research on the key loop of airflow distribution in mine ventilation tunnels[J]. Journal of Liaoning University of Engineering and Technology (Natural Science Edition), 2015, 34(10): 1131−1136.

    [20]

    吴洁葵, 李印洪, 李亚俊, 等. 巷道均速圈定位模型试验与修正[J]. 矿业研究与开发, 2020, 40(12): 112−116.

    WU J K, LI Y H, LI Y J, et al. Test and correction of the positioning model for the uniform velocity circle in tunnels[J]. Mining Research and Development, 2020, 40(12): 112−116.

    [21]

    宋莹, 王东, 郭欣, 等. 突扩巷道流场风流分布特征的PIV实验研究[J]. 中国安全生产科学技术, 2017, 13(6): 86−91.

    SONG Y, WANG D, GUO X, et al. PIV experimental study on the distribution characteristics of airflow in the sudden expansion tunnel flow field[J]. Journal of Safety Science and Technology, 2017, 13(6): 86−91.

    [22]

    张京兆, 王艳, 魏引尚, 等. 入口形式对矩形巷道定点测风位置影响研究[J]. 矿业研究与开发, 2021, 41(6): 154−157.

    ZHANG J Z, WANG Y, WEI Y S, et al. Research on the influence of entrance form on the fixed point wind measurement position of rectangular tunnels[J]. Mining Research and Development, 2021, 41(6): 154−157.

    [23]

    鹿广利, 武赞龙, 赵剑锋. 不同拐弯角度下巷道内风流变化规律的数值模拟[J]. 矿业研究与开发, 2019, 39(12): 116−121.

    LU G L, WU Z L, ZHAO J F. Numerical simulation of airflow variation in tunnels at different turning angles[J]. Mining Research and Development, 2019, 39(12): 116−121.

    [24]

    张浪. 巷道测风站风速传感器平均风速测定位置优化研究[J]. 煤炭科学技术, 2018, 46(3): 96−102.

    ZHANG L. Optimization study on the average wind speed measurement position of the wind speed sensor at the tunnel wind measurement station[J]. Coal Science and Technology, 2018, 46(3): 96−102.

    [25]

    徐新坤. 煤矿用机械叶片式风速表测量准确度的影响因素[J]. 煤炭与化工, 2016, 39(5): 136−137+140.

    XU X K. Factors affecting the measurement accuracy of mechanical blade anemometers used in coal mines[J]. Coal and Chemical Industry, 2016, 39(5): 136−137+140.

    [26]

    蒋泽, 郝叶军, 刘炎. 一种矿用皮托管式风速传感器设计[J]. 工矿自动化, 2012, 38(11): 61−63.

    JIANG Z, HAO Y J. LIU Y. Design of a pitot tube wind speed sensor for mining[J]. Industry and Mine Automation, 2012, 38(11): 61−63.

    [27]

    李秉芮, 刘娜, 井上雅弘. 高精度矿用超声波风速测量仪设计[J]. 工矿自动化, 2022, 48(2): 119−124.

    LI B R, LIU N, YASUHIRO I. Design of high−precision ultrasonic wind speed measuring instrument for mining[J]. Industry and Mine Automation, 2022, 48(2): 119−124.

    [28]

    刘华欣. 基于超声波传感器的风速风向测量研究[J]. 仪表技术与传感器, 2018(12): 101−104+110.

    LIU H X. Research on wind speed and direction measurement based on ultrasonic sensors[J]. Instrument Technique and Sensor, 2018(12): 101−104+110.

    [29]

    冉霞, 游青山. 基于时差法的矿用超声波风速传感器[J]. 煤矿安全, 2015, 46(7): 116−119.

    RAN X, YOU Q S. Mining ultrasonic wind speed sensor based on time difference method[J]. Safety in Coal Mines, 2015, 46(7): 116−119.

    [30]

    周川云. 高精度低下限超声波风速风向传感器关键技术研究[D]. 北京: 煤炭科学研究总院, 2018.

    ZHOU C Y. Research on key technologies of high precision low lower limit ultrasonic wind speed and direction sensor[D]. Beijing: Coal Science Research Institute, 2018.

    [31]

    宋涛, 王建文, 吴奉亮, 等. 基于超声波全断面测风的矿井风网实时解算方法[J]. 工矿自动化, 2022, 48(4): 114−120+141.

    SONG T, WANG J W, WU F L, et al. Real time calculation method for mine air network based on ultrasonic full section wind measurement[J]. Industry and Mine Automation, 2022, 48(4): 114−120+141.

    [32]

    游青山. 一种矿用超声波风速传感器的设计[J]. 煤矿安全, 2017, 48(1): 88−91.

    YOU Q S. Design of a mining ultrasonic wind speed sensor[J]. Safety in Coal Mines, 2017, 48(1): 88−91.

    [33]

    鲁胜麟. 基于阵列式超声波传感器的风速风向测量方法研究[D]. 长春: 长春理工大学, 2022.

    LU S L. Research on wind speed and direction measurement method based on array ultrasonic sensors[D]. Changchun: Changchun University of Science and Technology, 2022.

    [34]

    LIU Z J, ZHAO Y T, CHEN S S, et al. Predicting distributed roughness induced transition with a four−equation laminar kinetic energy transition model[J]. Aerospace Science and Technology, 2020, 99: 105736. doi: 10.1016/j.ast.2020.105736

    [35]

    刘剑, 李雪冰, 宋莹, 等. 无外部扰动的均直巷道风速和风压测不准机理实验研究[J]. 煤炭学报, 2016, 41(6): 1447−1453.

    LIU J, LI X B, SONG Y, et al. Experimental study on the uncertainty mechanism of wind speed and pressure measurement in uniform straight tunnels without external disturbances[J]. Journal of China Coal Society, 2016, 41(6): 1447−1453.

    [36]

    张士岭. 煤矿通风巷道断面风速测定与变化规律研究[J]. 矿业安全与环保, 2019, 46(4): 17−20.

    ZHANG S L. Measurement and variation law of cross−sectional wind speed in coal mine ventilation tunnels[J]. Mining Safety and Environmental Protection, 2019, 46(4): 17−20.

    [37]

    李雪冰, 刘剑, 秦洪岩, 等. 湍流脉动影响下巷道平均风速单点统计测量方法[J]. 华北科技学院学报, 2018, 15(2): 1−9.

    LI X B, LIU J, QIN H Y, et al. Single point statistical measurement method for average wind speed in tunnels under the influence of turbulent pulsation[J]. Journal of North China Institute of Science and Technology, 2018, 15(2): 1−9.

    [38]

    刘剑, 李雪冰, 陈廷凯, 等. 矿井定常湍流脉动对通风阻力测试影响的理论分析[J]. 中国安全生产科学技术, 2016, 12(5): 22−25.

    LIU J, LI X B, CHEN T K, et al. Theoretical analysis of the influence of steady turbulent pulsation in mines on ventilation resistance testing[J]. Journal of Safety Science and Technology, 2016, 12(5): 22−25.

    [39]

    LALATENDU M, DEVI P M, PRASANTA K. J. Application of wireless sensor network for environmental monitoring in underground coal mines: A systematic review[J]. Journal of Network and Computer Applications, 2018, 106: 48−67. doi: 10.1016/j.jnca.2017.12.022

    [40]

    赵丹, 沈志远, 宋子豪, 等. 智能通风矿井风速传感器数据清洗模型[J]. 中国安全科学学报, 2023, 33(9): 56−62.

    ZHAO D, SHEN Z Y, SONG Z H, et al. Intelligent ventilation mine wind speed sensor data cleaning model[J]. China Safety Science Journal, 2023, 33(9): 56−62.

    [41]

    倪景峰, 刘雪峰, 邓立军. 矿井通风参数缺失数据填补方法[J/OL]. 煤炭学报, 1−10[2024−05−21]. https://doi.org/10.13225/j.cnki.jccs.2023.0481.

    NI J F, LIU X F, DENG L J. Method for filling in missing data of mine ventilation parameters[J/OL]. Journal of China Coal Society, 1−10[2024−05−21]. https://doi.org/10.13225/j.cnki.jccs.2023.0481.

    [42]

    邓立军, 袁金波, 刘剑, 等. 基于SSA−LSTM的风速异常波动检测方法[J]. 煤炭科学技术, 2024, 52(3): 139−147.

    DENG L J, YUAN J B, LIU J, et al. Detection method for abnormal wind speed fluctuations based on SSA−LSTM[J]. Coal Science and Technology, 2024, 52(3): 139−147.

    [43]

    张京兆, 熊帅, 范京道, 等. 巷道障碍物对风速监测位置的影响研究[J]. 工矿自动化, 2023, 49(9): 64−72.

    ZHANG J Z, XIONG S, FAN J D, et al. Research on the influence of obstacles in tunnels on the location of wind speed monitoring[J]. Industry and Mine Automation, 2023, 49(9): 64−72.

    [44]

    李雪冰, 刘剑, 宋莹, 等. 井巷断面内单点风速与平均风速转换机制[J]. 安全与环境学报, 2018, 18(1): 123−128.

    LI X B, LIU J, SONG Y, et al. The conversion mechanism between single point wind speed and average wind speed within the cross−section of the mine roadway[J]. Journal of Safety and Environment, 2018, 18(1): 123−128.

    [45]

    潘竞涛. 基于最小二乘法的风速传感器测量值推导巷道平均风速[J]. 煤炭技术, 2018, 37(1): 213−215.

    PAN J T. Derivation of average wind speed in tunnels based on the measurement values of wind speed sensors using the least squares method[J]. Coal Technology, 2018, 37(1): 213−215.

    [46]

    WEI L J, WANG M W, LI S, et al. Line wind speed distribution model of rectangular tunnel cross−section[J]. Thermal Science, 2019, 23: 1513−1519. doi: 10.2298/TSCI180707218W

    [47]

    ZHOU L H, YUAN L M, RICK T, et al. Determination of velocity correction factors for real−time air velocity monitoring in underground mines[J]. International Journal of Coal Science & amp; Technology, 2017, 4: 322−332.

    [48]

    邵良杉, 闻爽爽. 基于GRU神经网络的巷道平均风速获取研究[J]. 黄金科学技术, 2021, 29(5): 709−718.

    SHAO L S, WEN S S. Research on obtaining average wind speed in tunnels based on GRU neural network[J]. Gold Science and Technology, 2021, 29(5): 709−718.

    [49]

    卞欢, 刘剑, 刘学, 等. 基于GA−BP神经网络的巷道平均风速单点测试研究[J]. 中国安全生产科学技术, 2023, 19(5): 57−64.

    BIAN H, LIU J, LIU X, et al. Research on single point testing of average wind speed in tunnels based on GA−BP neural network[J]. Journal of Safety Science and Technology, 2023, 19(5): 57−64.

    [50]

    文必龙, 李小东. 基于PSO算法优化GRU神经网络的孔隙度预测[J]. 计算机与数字工程, 2023, 51(11): 2597−2601.

    WEN B L, LI X D. Optimization of GRU neural network for porosity prediction based on PSO algorithm[J]. Computer & Digital Engineering, 2023, 51(11): 2597−2601.

    [51]

    刘洋, 张鸿, 徐娟, 等. 改进PSO的SVM回归模型及在气温预测中的应用[J]. 计算机系统应用, 2023, 32(9): 203−210.

    LIU Y, ZHANG H, XU J, et al. Improved SVM pegression model for PSO and its application in temperature prediction[J]. Computer Systems & Applications, 2023, 32(9): 203−210.

    [52]

    李亚俊, 吴洁葵, 李印洪, 等. 基于最小生成树原理的矿井通风网络监测布局优化[J]. 矿业研究与开发, 2021, 41(7): 172−175.

    LI Y J, WU J K, LI Y H, et al. Optimization of mine ventilation network monitoring layout based on minimum spanning tree principle[J]. Mining Research and Development, 2021, 41(7): 172−175.

    [53]

    刘尹霞, 马恒, 杨皓然. 矿井风速传感器可变模糊优选方案[J]. 辽宁工程技术大学学报(自然科学版), 2017, 36(10): 1031−1035.

    LIU Y X, MA H, YANG H R. Variable fuzzy optimal selection scheme for mine wind speed sensor[J]. Journal of Liaoning University of Engineering and Technology (Natural Science Edition), 2017, 36(10): 1031−1035.

    [54]

    董学林, 陈帅, 赵丹, 等. 最小树原理在矿井风速传感器布置方式上的应用研究[J]. 世界科技研究与发展, 2015, 37(6): 680−683.

    DONG X L, CHEN S, ZHAO D, et al. Research on the application of minimum tree principle in the layout of mine wind speed sensors[J]. World Sci−tech R& D, 2015, 37(6): 680−683.

    [55]

    SI J H, WANG X R, WANG Y Q, et al. Dynamic monitoring technology of air quantity in mine ventilation system based on optimum location of wind speed sensors[J]. Iop Conference Series: Earth and Environmental Science, 2021, 692: 042036. doi: 10.1088/1755-1315/692/4/042036

    [56]

    刘剑, 蒋清华, 刘丽, 等. 矿井通风系统阻变型故障诊断及风速传感器位置优化[J]. 煤炭学报, 2021, 46(6): 1907−1914.

    LIU J, JIANG Q H, LIU L, et al. Diagnosis of resistance type faults in mine ventilation systems and optimization of wind speed sensor positions[J]. Journal of China Coal Society, 2021, 46(6): 1907−1914.

    [57]

    倪景峰, 乐晓瑞, 常立峰, 等. 基于决策树的矿井通风阻变型故障诊断及传感器优化布置[J]. 中国安全生产科学技术, 2021, 17(2): 34−39.

    NI J F, LE X R, CHANG L F, et al. Diagnosis of mine ventilation resistance type faults and optimized sensor layout based on decision tree[J]. Journal of Safety Science and Technology, 2021, 17(2): 34−39.

    [58]

    贾瞳, 马恒, 高科. 基于割集矩阵算法风速监测智能优化[J]. 兰州大学学报(自然科学版), 2024, 60(1): 98−105.

    JIA T, MA H, GAO K. Intelligent optimization of wind speed monitoring based on cut set matrix algorithm[J]. Journal of Lanzhou University (Natural Science Edition), 2024, 60(1): 98−105.

    [59]

    李秉芮, 王伟, 陈凤梅, 等. 基于有向通路矩阵法的风速传感器最优布置[J]. 工矿自动化, 2021, 47(5): 52−57.

    LI B R, WANG W, CHEN F M, et al. Optimal arrangement of wind speed sensors based on directed path matrix method[J]. Industry and Mine Automation, 2021, 47(5): 52−57.

  • 加载中

(7)

(3)

计量
  • 文章访问数:  440
  • PDF下载数:  81
  • 施引文献:  0
出版历程
收稿日期:  2024-06-13
刊出日期:  2024-08-15

目录