-
摘要:
磷石膏大量堆存对环境有着重大威胁,杂质含量高、白度低等特点严重制约其高值化应用。以湖北省某企业磷石膏作为研究对象,结合磷石膏工艺矿物学研究,采用分级浮选进行其高效提纯,结果表明:盐酸、水玻璃、捕收剂ZX−4−4、起泡剂Q1作为浮选药剂时,经过一次粗选、两次精选和中矿顺序返回的闭路工艺流程,磷石膏中CaSO4·2H2O含量由89.65%提升至98.15%,品位远高于磷石膏国标GB/T 23456—2018一级品要求,白度由37.10%提升至52.44%,总回收率最高达83.47%;其中,磷石膏中二氧化硅含量由6.16%降低至0.58%,铁含量最低降低至
0.0062 %,直接焙烧所制备的β半水石膏白度超过80%。采用浮选的方法可显著提高磷石膏品质及其制品的性能。Abstract:The large−scale stockpiling of phosphogypsum poses a significant environmental challenge, mainly due to its high impurity content and low whiteness, which critically limit its potential for high−value applications. This study investigated phosphogypsum from a plant in Hubei Province, integrating process mineralogy with graded flotation for efficient purification. The results showed that the use of hydrochloric acid, water glass, collector ZX−4−4 and frother Q1 in a closed circuit flotation process − consisting of one rougher flotation, two cleaner flotations and a sequential middle return−significantly improved the quality of the material. Specifically, the CaSO4−2H2O content of the phosphogypsum was increased from 89.65% to 98.15%, while the whiteness improved from 37.10% to 52.44%. The overall recovery rate reached 83.47% with a significant reduction in impurities: silica content decreased from 6.16% to 0.58% and iron content was minimized to
0.0062 %. The whiteness of the β−hemihydrate gypsum produced by direct calcination of the purified phosphogypsum exceeded 80%, significantly exceeding the first grade specifications of the national standard GB/T23456 −2018 for phosphogypsum. Thus, the flotation process significantly improved both the quality of the phosphogypsum and the performance of the derived products.-
Key words:
- phosphogypsum /
- process mineralogy /
- flotation /
- impurity removal and whitening /
- β−hemihydrate gypsum
-
-
表 1 磷石膏化学成分XRF分析结果
Table 1. XRF results of chemical composition of phosphogypsum
/% 氧化物 BaO Na2O Fe2O3 K2O Al2O3 P2O5 SiO2 CaO SO3 含量 0.14 0.15 0.20 0.57 1.04 1.11 6.16 35.11 51.72 表 2 磷石膏原矿筛分分析结果
Table 2. Particle size distribution of raw phosphogypsum
粒级/mm +0.15 −0.15 +0.074 −0.074+0.043 −0.043+0.03 −0.03 产率/% 6.46 30.56 22.37 16.45 24.16 表 3 磷石膏各粒级XRF分析结果
Table 3. XRF analysis results of different particle size fractions of phosphogypsum
粒级 /
mmSO3 /
%CaO /
%SiO2 /
%P2O5 /
%Al2O3 /
%Fe2O3 /
%K2O /
%BaO/
%+0.15 47.94 30.6 12.52 1.24 2.34 0.88 1.63 0.19 −0.15+0.074 51.89 34.87 5.58 1.21 1.04 0.4 0.65 0.13 −0.074+0.043 52.93 35.99 3.71 1.25 0.68 0.21 0.36 0.11 −0.043+0.030 52.35 35.39 4.64 1.33 0.8 0.19 0.0.043 0.15 −0.030 43.56 29.47 18.15 2.16 3.06 0.26 1.5 0.33 表 4 方案1磷石膏闭路浮选实验结果
Table 4. Results of closed−circuit flotation of phosphogypsum according to scheme 1
/% 样品名称 产率 CaSO4·2H2O纯度 回收率 白度 精矿1 29.81 95.67 32.15 52.44 精矿2 45.99 98.15 50.88 50.80 尾矿 24.20 62.18 16.97 − 总计 100.00 88.71 100.00 − 表 5 方案2磷石膏闭路浮选实验结果
Table 5. Results of closed−circuit flotation of phosphogypsum according to scheme 2
/% 样品名称 产率 CaSO4·2H2O纯度 回收率 白度 精矿 78.86 97.58 86.75 52.44 尾矿 21.14 55.62 13.25 − 总计 100.00 88.71 100.00 − -
[1] 李春洪, 秦钢, 霍冀川. 磷石膏的工业资源化利用进展[J]. 四川建材, 2011, 37(3): 1−3+5. doi: 10.3969/j.issn.1672-4011.2011.03.001
LI C H, QIN G, HUO J C. Industrial resource recycling progress of phosphogypsum[J]. Sichuan Building Materials, 2011, 37(3): 1−3+5. doi: 10.3969/j.issn.1672-4011.2011.03.001
[2] YANG L, ZHANG Y, YAN Y. Utilization of original phosphogypsum as raw material for the preparation of self−leveling mortar[J]. Journal of Cleaner Production, 2016, 127: 204−213. doi: 10.1016/j.jclepro.2016.04.054
[3] 白海丹. 2019年我国磷石膏利用现状、问题及建议[J]. 硫酸工业, 2020(12): 7−10. doi: 10.3969/j.issn.1002-1507.2020.12.002
BAI H D. Current situation, problems and suggestions of phosphogypsum utilization of 2019 in China[J]. Sulphuric Acid Industry, 2020(12): 7−10. doi: 10.3969/j.issn.1002-1507.2020.12.002
[4] DEĞIRMENCI N. Utilization of phosphogypsum as raw and calcined material in manufacturing of building products[J]. Construction and Building Materials, 2008, 22(8): 1857−1862. doi: 10.1016/j.conbuildmat.2007.04.024
[5] DENG L, ZHANG Y, CHEN F, et al. Reactive crystallization of calcium sulfate dihydrate from acidic wastewater and lime[J]. Chinese Journal of Chemical Engineering, 2013, 21(11): 1303−1312. doi: 10.1016/S1004-9541(13)60626-6
[6] RASHAD A M. Phosphogypsum as a construction material[J]. Journal of Cleaner Production, 2017, 166: 732−743. doi: 10.1016/j.jclepro.2017.08.049
[7] TAYIBI H, CHOURA M, LÓPEZ F A, et al. Environmental impact and management of phosphogypsum[J]. Journal of Environmental Management, 2009, 90(8): 2377−2386. doi: 10.1016/j.jenvman.2009.03.007
[8] 朱鹏程, 罗鸣坤, 王国栋. 磷石膏脱硅柱浮选工艺研究[J]. 云南化工, 2016, 43(5): 1−7. doi: 10.3969/j.issn.1004-275X.2016.05.001
ZHU P C, LUO M K, WANG G D. Desilicification of phosphogypsum by column flotation process[J]. Yunnan Chemical Technology, 2016, 43(5): 1−7. doi: 10.3969/j.issn.1004-275X.2016.05.001
[9] 王进明, 董发勤, 王肇嘉, 等. 磷石膏浮选增白净化新工艺研究[J]. 非金属矿, 2019, 42(5): 1−5. doi: 10.3969/j.issn.1000-8098.2019.05.001
WANG J M, DONG F Q, WANG Z J, et al. Study on new technology of phosphogypsum whitening and purification by flotation[J]. Non−Metallic Mines, 2019, 42(5): 1−5. doi: 10.3969/j.issn.1000-8098.2019.05.001
[10] 沈维云, 郑光明, 孙桦林, 等. 磷石膏提纯增白实验研究[J]. 磷肥与复肥, 2022, 37(2): 5−6,28.
SHEN W Y, ZHENG G M, SUN H L, et al. Experimental study on purification and whitening of phosphogypsum[J]. Eco−industry Science & Phosphorus Fluorine Engineering, 2022, 37(2): 5−6,28.
[11] 汪洋, 唐敏, 黄宋魏, 等. 组合捕收剂浮选回收云南某铁尾矿中的磷[J]. 矿产保护与利用, 2022, 42(2): 80−84.
WANG Y, TANG M, HUANG S W, et al. Flotation recovery of phosphorous from with combined colecters from an iron tailings in Yunnan[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 80−84.
-