-
摘要:
石英陶瓷具有热膨胀系数小、热稳定好、介电常数低等优良特性,是诸多结构材料和功能材料领域的关键产品。基于石英陶瓷材料的性能优势及制备工艺,详细分析了高纯石英粉体的制备技术、石英陶瓷制备过程中的关键技术,归纳了提升石英陶瓷各项性能的关键因素及控制原理,分析了石英陶瓷在航空航天、浮法玻璃、电子、冶金、太阳能多晶硅等国家战略需求领域的应用现状,并对石英陶瓷未来的发展方向和解决方案进行了展望。
Abstract:Quartz ceramics possess excellent properties such as low thermal expansion coefficient, good thermal stability, and low dielectric constant, making them key products in many structural and functional material fields. Based on the performance advantages and preparation process of quartz ceramic materials, this paper analyzes in detail the preparation technology of high−purity quartz powder and the key technologies in the preparation process of quartz ceramics. It summarizes the key factors and control principles for improving the performance of quartz ceramics and analyzes the application status of quartz ceramics in national strategic demand fields such as aerospace, float glass, electronics, metallurgy, and solar polysilicon. Aiming at the current status, development prospects, and existing problems of quartz ceramics application, corresponding research and design and development methods are proposed, and the future development direction and solutions of quartz ceramics are prospected.
-
-
图 2 不同温度下烧结的石英陶瓷断口形貌结构SEM图[40]
Figure 2.
表 1 高纯石英粉体制备方法及优缺点
Table 1. Preparation methods and advantages/disadvantages of high−purity quartz powder
制备方法 制备原理 优缺点 磨碎分级法 利用机械力将石英块破碎成粉末,再通过分级等方法控制颗粒大小 操作简单、成本较低,适用于要求
不高的原料制备气流粉碎法 选择高纯度的石英粉末作为原料,利用气流设备将颗粒分散并按大小分级来获得高纯度、
合适粒径的石英粉体工艺简单、能获得高度纯净的石英粉体,
精确控制石英粉体的粒径,但能耗成本较高水热法 将硅源和水在高温高压条件下反应生成石英晶体,
通过控制硅源浓度、反应条件和添加剂种类来
调控石英尺寸和形貌能制备各种颗粒尺寸和形状的高纯度、
低杂质的纳米级石英粉体,具有高度
可控性,但制备周期长溶胶−凝胶法 将硅源化合物溶于溶剂中形成均匀溶胶,引入化学交联剂或凝胶剂使其凝胶化,随后热处理生成高纯晶体石英粉体,可通过控制凝胶成分、酸碱度和添加剂来调控石英粉体的纯度和形貌 制备过程可控性强,可以得到尺寸均匀、
有复杂形状需求、纳米级的高纯石英粉体,
但制备周期长、产物的特性受条件
影响大(如凝胶化时间对石英粉的
粒度分布的影响)气相沉积法 将准备的高纯度的硅源气体(如氯化硅或硅酮等)与氧源气体在高温炉中反应生成SiO2的气相中间产物,后沉积在基底或粉末收集器生成高纯度石英粉体 适用于制备纳米级、薄膜形式的高纯度
石英粉体,在气相中进行,减少了外部
杂质的污染、可控性强,能保证石英后续
使用的稳定性,但技术性强
且设备复杂等离子体化学
气相沉积法引入高频电场或微波辐射等能量源将高纯度的硅源化合物气体变成等离子体,随后分解并与基板表面反应生成硅氧化物,沉积在基板上生成高纯石英粉体 避免了固体杂质的污染,且不需要使用溶剂,保证了石
英粉体的高纯度、具有良好的颗粒大小和形状控制
能力、还可用于薄膜涂层,但能耗成本较高,设备复杂激光剥离法 使用高功率激光照射在石英块表面,产生等离子体和高能粒子将石英块表面的材料剥离,在空气中凝聚成微小的石英颗粒 高度可控性(激光能量控制)、无需使用
化学溶剂或添加剂、通过非接触性的
方法,不引入杂质, 但激光设备需要高
投资且生产周期长高温煅烧法 将石英矿石或石英砂置于高温电弧熔炼炉熔融后再冷却固化析出石英块,随后磨碎和筛分,获得高纯石英粉体 适用于大规模生产大颗粒的高纯熔融
石英粉体,但投入成本高且无法保证
制备过程的均匀性表 2 石英陶瓷制品主要成型方式及优缺点
Table 2. Main forming methods and advantages/disadvantages of quartz ceramic products
成型工艺 制备技术 制品特征 优缺点 普通注浆
成型将石英浆料注入成型模具中,依靠浆料的重力来填充模具,成型压力较低 大小形状、异形形状、复杂形状均合适 优点:步骤简单实用
缺点:占地面积大,生产周期长,成型精度较低、产量低振动压力注浆成型 将石英浆料注入成型模具中,施加振动或压力以辅助浆料在模具内均匀分布 成型大件、厚实制品 优点:提高了制品的密度和均匀性
缺点:占地面积大,生产周期长注凝成型 引入凝胶体系,在引发剂和催化剂的共同作用下,对粉料进行包裹从而原位固化制成坯体 大规格异型厚实制品 优点:适用于复杂形状净尺寸成型,结构均匀,致密性好
缺点:原料制备困难,技术要求高,工期长热压成型 通过高温使石英粉料变软或部分
熔化后,利用模具施加压力制坯适合形状较复杂、尺寸精度要求高的中小型产品 优点:设备简单、操作方便、成型时间短,产品基本无需后期加工
缺点:成型压力高,能耗高,且烧结收缩率大,工序复杂等静压成型 使用液压或机械压力来均匀施加压力,使石英粉体在室温下紧密结合 形状复杂、细长大尺寸精密制品,特别适合制备实心或中空管状或筒状坯体 制品组织结构均匀,致密度合适,烧结收缩率小,模具成本低,生产效率高 光固化打印成型 建模设计陶瓷产品,随后使用光固化打印机,通过逐层的方式将陶瓷材料制成实体 具有高度复杂内腔的精密陶瓷部件 优点:无需传统模具,集设计和制造为一体,可实现陶瓷产品成型个性化,且废材较少
缺点:打印技术的标准化和规范化还不完善添加剂 抑制析晶作用机理 B2O3 B2O3可以在SiO2表面覆盖并与硅氧键键合,修补SiO2的表面缺陷来抑制析晶 H3BO3 5%的H3BO3在还原性气氛下对石英陶瓷有良好的抑制析晶作用 TiB2 TiB2氧化引入金红石,有利于提高助烧样品的热稳定性,同时对抑制析晶也有效果 B4C B4C 在空气气氛烧结过程中氧化引入B2O3 熔体,包覆在熔融石英表面并键合,减少其表面缺陷 纳米SnO2 1%的纳米SnO2可有效地抑制石英陶瓷方石英的析出,降低石英陶瓷在升温过程中的热膨胀率 纳米La2O3 纳米La2O3 充当晶核作用,晶体以纳米La2O3 为中心析出,改变了石英陶瓷中方石英的成核与长大方式,从而改变了熔融石英的析晶行为 纳米Y2O3 纳米Y2O3具有极高的表面能,高温作用下在熔融石英颗粒表面生成Y2SiO5,对石英陶瓷表面断裂的网络结构起到修补作用从而抑制析晶 纳米ZnO 纳米ZnO具有极高的表面能,高温作用下在熔融石英颗粒表面生成Zn2SiO4,对石英陶瓷表面断裂的网络结构起到修补作用从而抑制析晶 纳米Nd2O3 石英陶瓷表面缺陷会减少,石英陶瓷表面玻璃结构的稳定性得到提升 -
[1] 荆富, 王磊. 石英陶瓷的研究及应用进展[J]. 中国非金属矿工业导刊, 2013(3): 16−20. doi: 10.3969/j.issn.1007-9386.2013.03.006
JING F, WANG L. Progress in research and application of quartz ceramics[J]. China Non−Metallic Mineral Industry Guide, 2013(3): 16−20. doi: 10.3969/j.issn.1007-9386.2013.03.006
[2] J. S. LYONS, T. L. STARR.Strength and toughness of slip−cast fused−silica composites[J]. Journal of the American Ceramic Society, 2010, 77(6): 1673−1675.
[3] 贾德龙, 张万益, 陈丛林, 等. 高纯石英全球资源现状与我国发展建议[J]. 矿产保护与利用, 2019, 39(5): 111−117.
JIA D L, ZHANG W Y, CHEN C L, et al. Global resource status of high−purity quartz and development suggestions in China[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 111−117.
[4] CHOI J H, LEE W G, SHIM T H, et al. Fumed silica−based ultra−high−purity synthetic quartz powder via sol–gel process for advanced semiconductor process beyond design rule of 3 nm[J]. Nanomaterials, 2023, 13(3): 390. doi: 10.3390/nano13030390
[5] VATALIS K I, CHARALAMPIDES G, PLATIAS S, et al. Market developments and industrial innovative applications of high purity quartz refines[J]. Procedia Economics and Finance, 2014, 14: 624−633. doi: 10.1016/S2212-5671(14)00751-5
[6] PAN X, LI S, LI Y, et al. Resource, characteristic, purification and application of quartz: a review[J]. Minerals Engineering, 2022, 183: 107600. doi: 10.1016/j.mineng.2022.107600
[7] EL SHERIF M. Silica added value & application in solar cells manufacturing[J]. Journal of the Egyptian Society of Engineers, 2017, 56(1): 37−30.
[8] 徐雯雯. 高纯石英粉制备工艺研究[D]. 青岛: 中国海洋大学, 2013.
XU W W. Study on preparation technology of high purity quartz powder [D]. Qingdao: Ocean University of China, 2013.
[9] ZHANG R, TANG C, NI W, et al. Research status and challenges of high−purity quartz processing technology from a mineralogical perspective in China[J]. Minerals, 2023, 13(12): 1505. doi: 10.3390/min13121505
[10] ZHONG T, YU W, SHEN C, et al. Research on preparation and characterisation of high−purity silica sands by purification of quartz vein ore from dabie mountain[J]. Silicon, 2021: 1−7.
[11] ZHANG H, GUO S, WU J, et al. Effect of quartz crystal structure transformations on the removal of iron impurities[J]. Hydrometallurgy, 2021, 204: 105715. doi: 10.1016/j.hydromet.2021.105715
[12] LI Y, LI S, PAN X, et al. Eco−friendly strategy for preparation of high−purity silica from high−silica IOTs using S−HGMS coupling with ultrasound−assisted fluorine−free acid leaching technology[J]. Journal of Environmental Management, 2023, 339: 117932. doi: 10.1016/j.jenvman.2023.117932
[13] 袁向东, 吴翠珍, 张联盟. 精细熔融石英陶瓷技术研究及开发应用的新进展[J]. 硅酸盐通报, 2006, 25(6): 154−158. doi: 10.3969/j.issn.1001-1625.2006.06.034
YUAN X D, WU C Z, ZHANG L M. New progress in research, development and application of fine fused quartz ceramics[J]. Bulletin of Ceramics, 2006, 25(6): 154−158. doi: 10.3969/j.issn.1001-1625.2006.06.034
[14] 刘泽伟, 邹玄, 赵阳, 等. 某石英砂矿制取高纯石英工艺研究[J]. 矿产综合利用, 2020(4): 116−120. doi: 10.3969/j.issn.1000-6532.2020.04.019
LIU Z W, ZOU X, ZHAO Y, et al. Study on the process of producing high purity quartz from a quartz sand mine[J]. Comprehensive Utilization of Mineral Resources, 2020(4): 116−120. doi: 10.3969/j.issn.1000-6532.2020.04.019
[15] YANG C, LI S, BAI J, et al. Advanced purification of industrial quartz using calcination pretreatment combined with ultrasound−assisted leaching [J]. Acta Geodynamica et Geomaterialia, 2018: 187−195.
[16] 张保川, 薛屺, 张进, 等. 以四氯化硅水热法合成高纯微米级石英晶体[J]. 无机盐工业, 2013, 45(2): 33-35. doi: 10.3969/j.issn.1006-4990.2013.02.011
ZHANG B C, XUE Q, ZHANG J, et al. Synthesis of high purity micron quartz crystals by hydrothermal method of silicon tetrachloride[J]. Inorganic Chemicals Industry, 2013, 45(2): 33-35. doi: 10.3969/j.issn.1006-4990.2013.02.011
[17] CHEN Z, LIAN Y Y, LIU X, et al. Recent research and development of thick CVD tungsten coatings for fusion application[J]. Tungsten, 2020, 2: 83−93. doi: 10.1007/s42864-020-00041-x
[18] LI H, HU K, LIU Y, et al. Improved mechanical properties of silica ceramic cores prepared by 3D printing and sintering processes[J]. Scripta Materialia, 2021, 194: 113665. doi: 10.1016/j.scriptamat.2020.113665
[19] A. TSETSEKOU, C. AGRAFIOTIS, A. MILIAS. Optimization of the rheological properties of alumina slurries for ceramic processing applications Part I: Slip-casting[J]. Journal of the European Ceramic Society, 2001, 21(3): 363-373.
[20] PEREZ J M, RINCON J M, ROMERO M. Effect of moulding pressure on microstructure and technological properties of porcelain stoneware[J]. Ceramics International, 2012, 28(1): 317−325.
[21] CHAUHAN A S, ANIRUDH B, SATYANARAYANA A, et al. FEA optimization of injection parameters in ceramic core development for investment casting of a gas turbine blade[J]. Materials Today: Proceedings, 2020, 26: 2190−2199. doi: 10.1016/j.matpr.2020.02.477
[22] OMATETE O O, JAMMY M A, STEHLOW R A. Gelcastinga new ceramic forming process[J]. American Ceramic Society Bulletin, 1991, 10(70): 1641−1649.
[23] YOUNG A C, OMATETE O O, JANNEY M A, et al. Gelcasting of alumina[J]. Journal of the American Ceramic Society, 2010, 74(3): 612−618.
[24] CHEN Z W, LI Z Y, LI J J, et al. 3D printing of ceramics: a review[J]. Journal of the European Ceramic Society, 2019, 39(4): 661−87. doi: 10.1016/j.jeurceramsoc.2018.11.013
[25] 刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2019, 48(9): 1−12. doi: 10.11868/j.issn.1001-4381.2019.000122
LIU Y, CHEN Z W. Research progress of ceramic photocuring 3D printing technology[J]. Journal of Materials Engineering, 2019, 48(9): 1−12. doi: 10.11868/j.issn.1001-4381.2019.000122
[26] 顾玥, 王功, 段文艳, 等. 陶瓷光固化成型技术的应用与展望[J]. 硅酸盐学报, 2019, 49(5): 867−877.
GU Y, WANG G, DUAN W Y, et al. Application and prospect of photocuring technology for ceramics[J]. Journal of the Chinese Ceramics, 2019, 49(5): 867−877.
[27] LI J P, HABIBOVIC P, VAN DEN DOEL M, et al. Bone ingrowth in porous titanium implants produced by 3D fiber deposition[J]. Biomaterials, 2007, 28(18): 2810−2820. doi: 10.1016/j.biomaterials.2007.02.020
[28] 陈典典, 鲍明东, 李鑫, 等. 3D打印氧化硅基陶瓷型芯的各向异性研究[J]. 中国陶瓷, 2019, 56(5): 33−39.
CHEN D D, BAO M D, LI X, et al. Anisotropy of 3D printed silica based ceramic core[J]. Chinese Ceramics, 2019, 56(5): 33−39.
[29] WANG X, ZHOU Y, ZHOU L, et al. Microstructure and properties evolution of silicon−based ceramic cores fabricated by 3D printing with stair−stepping effect control[J]. Journal of the European Ceramic Society, 2021, 41(8): 4650−4657. doi: 10.1016/j.jeurceramsoc.2021.03.036
[30] XIA L, QIANG L, YAG. Ceramic processed by slip casting via aqueous slurries[J]. Ceramics International, 2008, 34(2): 397−401. doi: 10.1016/j.ceramint.2006.10.018
[31] 侯清麟, 文定, 侯熠徽, 等. 固相含量对熔融石英陶瓷注凝成型的影响[J]. 广州化工, 2016, 44(22): 21−23. doi: 10.3969/j.issn.1001-9677.2016.22.008
HOU Q L, WEN D, HOU Y H, et al. Effect of solid phase content on injection formation of fused quartz ceramics[J]. Guangzhou Chemical Industry, 2016, 44(22): 21−23. doi: 10.3969/j.issn.1001-9677.2016.22.008
[32] 侯清麟, 王迎霞, 田靓, 等. 熔融石英陶瓷的注凝成型工艺及影响其性能的因素[J]. 广州化工, 2018, 46(2): 1−2+18. doi: 10.3969/j.issn.1001-9677.2018.02.002
HOU Q L, WANG Y X, TIAN L, et al. Injection moulding process and factors affecting properties of fused quartz ceramics[J]. Guangzhou Chemical Industry, 2018, 46(2): 1−2+18. doi: 10.3969/j.issn.1001-9677.2018.02.002
[33] WAN W, HUANG C E, YANG J, et al. Effect of sintering temperature on the properties of fused silica ceramics prepared by gelcasting[J]. Journal of Electronic Materials, 2014, 43(7): 2566−2572. doi: 10.1007/s11664-014-3112-7
[34] WAN W, YANG J, JIN Z, et al. Effect of solid loading on gelcasting of silica ceramics using DMAA[J]. Ceramics International, 2014, 40(1): 1735−1740. doi: 10.1016/j.ceramint.2013.07.071
[35] WAN W, YANG J, ZENG J, et al. Gelcasting of fused silica glass using a low−toxicity monomer DMAA[J]. Journal of Non−Crystalline Solids, 2013, 379: 229−234. doi: 10.1016/j.jnoncrysol.2013.08.017
[36] KANDI K K, PAL S K, RAO C S P. Effect of dispersant on the rheological properties of gelcast fused silica ceramics[C]. IOP Conference Series: Materials Science and Engineering, 2016, 149.
[37] 陈越军, 卜景龙, 崔燚, 等. 添加纳米Y2O3或纳米ZnO对熔融石英陶瓷脱玻性能的影响[J]. 耐火材料, 2019, 53(1): 61−64. doi: 10.3969/j.issn.1001-1935.2019.01.015
CHEN Y J, BU J L, CUI Y, et al. Effect of addition of nano−Y2O3 or nano−ZnO on deglassing properties of fused quartz ceramics[J]. Journal of Refractories, 2019, 53(1): 61−64. doi: 10.3969/j.issn.1001-1935.2019.01.015
[38] 王金波. 熔融石英陶瓷的等静压成型及烧结工艺研究[D]. 武汉: 华中科技大学, 2009.
WANG J B. Research on isostatic pressing and sintering process of fused quartz ceramics[D]. Wuhan: Huazhong University of Science and Technology, 2009.
[39] 闫法强, 陈斐, 沈强, 等. 放电等离子烧结技术制备熔融石英陶瓷[J]. 硅酸盐通报, 2007(2): 362−365+381. doi: 10.3969/j.issn.1001-1625.2007.02.032
YAN F Q, CHEN F, SHEN Q, et al. Preparation of fused quartz ceramics by discharge plasma sintering[J]. Bulletin of Ceramics, 2007(2): 362−365+381. doi: 10.3969/j.issn.1001-1625.2007.02.032
[40] LI H, HU K, LIU Y, et al. Improved mechanical properties of silica ceramic cores prepared by 3D printing and sintering processe[J]. Scripta Materialia, 2021: 113665.
[41] JUNIOR A D N, HOTZA D, SOLER V C, et al. Effect of quartz particle size on the mechanical behaviour of porcelain tile subjected to different cooling rates[J]. Journal of the European Ceramic Society, 2009, 29(6): 1039−1046. doi: 10.1016/j.jeurceramsoc.2008.07.052
[42] ZAICHUK A, AMELINA A, KALISHENKO Y, et al. Aspects of development and properties of densely sintered of ultra−high−frequency radio−transparent ceramics of cordierite composition[J]. Journal of the Korean Ceramic Society, 2021, 58(4): 483−494. doi: 10.1007/s43207-021-00125-5
[43] LIANG D, HUANG J, ZHANG H, et al. Influencing factors on the performance of tubular ceramic membrane supports prepared by extrusion[J]. Ceramics International, 2021, 47(8): 10464−10477. doi: 10.1016/j.ceramint.2020.12.235
[44] 鄢文超. 添加剂对熔融石英陶瓷析晶和致密化的影响[D]. 武汉: 华中科技大学, 2012.
YAN W C. Effect of additives on crystallization and densification of fused quartz ceramics[D]. Wuhan: Huazhong University of Science and Technology, 2012.
[45] JIA D C, ZHOU Y, LEI T C. Ambient and elevated temperature mechanical properties of hot−pressed fused silica matrix composite[J]. Journal of the European Ceramic Society, 2003, 23(5): 801−808. doi: 10.1016/S0955-2219(02)00156-5
[46] 张磊. 氧化锆增强熔融硅陶瓷的力学和电学性能[J]. 金属功能材料, 2022, 29(3): 41−46.
ZHANG L. Mechanical and electrical properties of fused silicon ceramics enhanced by zirconia[J]. Metal Functional Materials, 2022, 29(3): 41−46.
[47] LIANG L. Study on preparation of quartz ceramics toughened with mineralizer[J]. Integrated Ferroelectrics, 2020, 207(1): 197−207. doi: 10.1080/10584587.2020.1728679
[48] XU C M, WANG S W. Roles of oxygen and hydrogen in the amorphization of cristobalite[J]. Journal of the American Ceramic Society, 2007, 90(10): 3268−3273. doi: 10.1111/j.1551-2916.2007.01897.x
[49] 王清涛. 高强度熔融石英陶瓷的制备研究[D]. 淄博: 山东理工大学, 2019.
WANG Q T. Preparation of high strength fused quartz ceramics[D]. Zibo: Shandong University of Technology, 2019.
[50] 李友胜, 韩志强, 李楠. 外加剂对熔融石英陶瓷烧结性能的影响[J]. 耐火材料, 2004(5): 334−335+346. doi: 10.3969/j.issn.1001-1935.2004.05.011
LI Y S, HAN Z Q, LI N. Effect of admixtures on sintering properties of fused quartz ceramics[J]. Refractory Materials, 2004(5): 334−335+346. doi: 10.3969/j.issn.1001-1935.2004.05.011
[51] 谷莹蕾, 李勇, 卜景龙, 等. 纳米级SnO2或Yb2O3对熔融石英陶瓷析晶性能的影响[J]. 人工晶体学报, 2019, 50(5): 927−932.
GU Y L, LI Y, BU J L, et al. Effect of nano−sized SnO2 or Yb2O3 on crystallization performance of fused quartz ceramics[J]. Journal of Intraocular Lenses, 2019, 50(5): 927−932.
[52] 陈越军, 张璞, 吕东风, 等. 纳米氧化镧对熔融石英陶瓷析晶动力学的影响[J]. 中国陶瓷, 2019, 55(9): 43−48.
CHEN Y J, ZHANG P, LV D F, et al. Effect of nanocrystalline lanthanum oxide on crystallization kinetics of fused quartz Ceramics[J]. China ceramics, 2019, 55(9): 43−48.
[53] 谷莹蕾, 卜景龙, 陈越军, 等. 纳米Nd2O3对熔融石英析晶机制的影响[J]. 耐火材料, 2014, 48(4): 249−253. doi: 10.3969/j.issn.1001-1935.2014.04.003
GU Y L, BU J L, CHEN Y J, et al. Effect of nano Nd2O3 on crystallization mechanism of fused quartz[J]. Refractory Materials, 2014, 48(4): 249−253. doi: 10.3969/j.issn.1001-1935.2014.04.003
[54] 李娜. 利用二氧化硅基空心微珠制备多孔陶瓷天线罩材料及性能研究[D]. 太原: 中北大学, 2016.
LI N. Study on materials and properties of porous ceramic radome prepared by silica hollow microbeads[D]. Taiyuan: North University of China, 2016.
[55] YANG X, LI B, LI D, et al. Fabrication and oxidation resistance of silicon nitride fiber reinforced silica matrix wave−transparent composites[J]. Journal of Materials Science & Technology, 2019, 35(12): 2761−2766.
[56] 陈虹, 胡利明, 贾光耀, 等. 陶瓷天线罩材料的研究进展[J]. 硅酸盐通报, 2002(4): 40−44. doi: 10.3969/j.issn.1001-1625.2002.04.009
CHEN H, HU L M, JIA G Y, et al. Research progress of ceramic radome materials[J]. Bulletin of Ceramics, 2002(4): 40−44. doi: 10.3969/j.issn.1001-1625.2002.04.009
[57] 刘学理. 石英陶瓷在浮法玻璃生产中的应用[J]. 玻璃, 2021, 48(7): 26−30. doi: 10.3969/j.issn.1003-1987.2021.07.007
LIU X L. Application of quartz ceramics in the production of float glass[J]. Glass, 2021, 48(7): 26−30. doi: 10.3969/j.issn.1003-1987.2021.07.007
[58] 唐福恒, 盛利军, 赵世博. L型吊墙前端采用耐火材料砖砌挡火门是发展趋势[J]. 玻璃, 2014, 41(3): 3−8.
TANG F H, SHENG L J, ZHAO S B. The use of refractory brick fire door in front of L−type hanging wall is a development trend[J]. Glass, 2014, 41(3): 3−8.
[59] 赵建国, 袁向东, 崔文亮, 等. 熔融石英陶瓷产品在浮法玻璃热工设备上的应用[J]. 玻璃, 2001(2): 30−33. doi: 10.3969/j.issn.1003-1987.2001.02.007
ZHAO J G, YUAN X D, CUI W L, et al. Application of fused quartz ceramic products in float glass thermal equipment[J]. Glass, 2001(2): 30−33. doi: 10.3969/j.issn.1003-1987.2001.02.007
[60] 刘得利. 石英陶瓷电器绝缘材料[J]. 佛山陶瓷, 2002(11): 33. doi: 10.3969/j.issn.1006-8236.2002.11.013
LIU D L. Quartz ceramic electrical insulation materials[J]. Foshan Ceramics, 2002(11): 33. doi: 10.3969/j.issn.1006-8236.2002.11.013
[61] SUZDAL'TSEV E I. Fabrication of high−density quartz ceramics: research and practical aspects. part 3. Sintering of quartz ceramics[J]. Refractories and Industrial Ceramics, 2005, 46(6): 384−390. doi: 10.1007/s11148-006-0032-y
[62] 戴斌煜, 王薇薇, 商景利. 低压铸造陶瓷升液管材料抗热震性研究[J]. 铸造技术, 2008, 29(12): 1677−1680.
DAI B Y, WANG W W, SHANG J L. Thermal shock resistance of ceramic riser materials for low pressure casting[J]. Foundry Technology, 2008, 29(12): 1677−1680.
[63] 刘孝福, 娄延春, 齐笑冰, 等. 低压铸造技术在铜合金和黑色金属领域的发展和应用[J]. 铸造, 2006(6): 585−588. doi: 10.3321/j.issn:1001-4977.2006.06.016
LIU X F, LOU Y C, QI X B, et al. Development and application of low pressure casting technology in copper alloys and ferrous metals[J]. Foundry, 2006(6): 585−588. doi: 10.3321/j.issn:1001-4977.2006.06.016
[64] 米国发, 赵恒涛. 低压铸造升液管的研究与应用[J]. 航天制造技术, 2007(4): 56−59.
MI G F, ZHAO H T. Research and application of low pressure casting riser[J]. Aerospace Manufacturing Technology, 2007(4): 56−59.
[65] 张晓艳. 熔融石英坩埚的制备及其析晶行为研究[D]. 天津: 天津大学, 2014.
ZHANG X Y. Study on preparation and crystallization behavior of fused quartz crucible[D]. Tianjin: Tianjin University, 2014.
[66] 贾建广. 多晶硅铸锭用高纯表面处理石英陶瓷坩埚[Z]. 新余:江西中材太阳能新材料有限公司, 2018−03−25.
JIA J G. High purity surface treatment quartz ceramic crucible for polysilicon ingot casting [Z]. Jiangxi Province, Jiangxi Sinocai Solar New Materials Co. LTD, 2018−03−25.
-