百年黄药:产品设计、合成与应用研究进展

谭俊, 黄苗苗, 马鑫, 钟宏, 肖凤, 王帅. 百年黄药:产品设计、合成与应用研究进展[J]. 矿产保护与利用, 2025, 45(3): 13-24. doi: 10.13779/j.cnki.issn1001-0076.2025.03.002
引用本文: 谭俊, 黄苗苗, 马鑫, 钟宏, 肖凤, 王帅. 百年黄药:产品设计、合成与应用研究进展[J]. 矿产保护与利用, 2025, 45(3): 13-24. doi: 10.13779/j.cnki.issn1001-0076.2025.03.002
TAN Jun, HUANG Miaomiao, MA Xin, ZHONG Hong, XIAO Feng, WANG Shuai. A Hundred Years of Xanthates: Research Progress of Product Design, Synthesis and Application[J]. Conservation and Utilization of Mineral Resources, 2025, 45(3): 13-24. doi: 10.13779/j.cnki.issn1001-0076.2025.03.002
Citation: TAN Jun, HUANG Miaomiao, MA Xin, ZHONG Hong, XIAO Feng, WANG Shuai. A Hundred Years of Xanthates: Research Progress of Product Design, Synthesis and Application[J]. Conservation and Utilization of Mineral Resources, 2025, 45(3): 13-24. doi: 10.13779/j.cnki.issn1001-0076.2025.03.002

百年黄药:产品设计、合成与应用研究进展

  • 基金项目: 国家自然科学基金项目(52074354);中央引导地方科技发展资金项目(23ZYQD296);湖南省大学生创新训练计划项目(S202510533393);中南大学研究生创新项目(2023XQLH112)
详细信息
    作者简介: 谭俊(2002—),男,江西赣州人,硕士研究生,主要从事资源化工技术研究,E-mail:242312132@csu.edu.cn
    通讯作者: 王帅(1978—),男,河南南阳人,博士,教授,博士生导师,主要从事资源化工技术研究,E-mail:wangshuai@csu.edu.cn
  • 中图分类号: TD923+.13

A Hundred Years of Xanthates: Research Progress of Product Design, Synthesis and Application

More Information
  • 黄药是一类重要的有机化合物,被广泛应用于选矿、环境保护和化学合成等领域。系统地介绍了黄药的结构、理化性质和产品设计策略,深入探讨了分子结构组装、量子化学计算以及定量构效关系研究在新型黄药研发中的应用,并分析了通过黄药混合与组合用药实现性能优化的途径。阐述了直接合成法和溶剂法两种黄药合成方法,总结了其他合成方法的工艺原理和优缺点。归纳了黄药在浮选、废水处理和精细化学品合成中的应用情况,并介绍了化学沉淀法、吸附法、化学氧化法、微生物法及联合处理法等黄药废水处理技术,展望了黄药的开发和应用发展方向。

  • 加载中
  • 图 1  常见黄药的结构式

    Figure 1. 

    图 2  黄药与重金属离子的作用模式[7]

    Figure 2. 

    图 3  IBX(a)和PBAHX(b)的优化结构,IBX(c)和PBAHX(d)的MEP图,PBAHX的IGMH图(e)和IGMH图的比例尺(f)[11]

    Figure 3. 

    图 4  二硫化碳自溶剂法合成黄药的反应机理[28]

    Figure 4. 

    表 1  近年来开发的双极性基黄药

    Table 1.  The bipolar xanthates developed in recent years

    黄药种类结构式参考文献
    醚基黄药[10]
    硫醚基黄药[13]
    酰氨基黄药[11,14]
    硫脲基黄药[12]
    硫氨酯基黄药[15]
    下载: 导出CSV

    表 2  黄药的其他合成方法

    Table 2.  Other synthesis methods of xanthates

    合成方法 合成原理 优点 缺点
    蒸气法 在高温条件下使二硫化碳蒸气与苛性碱、醇反应 无需额外冷却,二硫化碳循环回用可减少其用量 副反应多,产率低(50%~81%)
    润湿剂法

    采用少量的水、苯或其他有机溶剂润湿苛性碱,再与醇和二硫化碳反应。以水为润湿剂时,称为湿碱法;以有机溶剂为润湿剂时,称为干燥法 防止苛性碱结块,游离碱含量低,润湿剂用量少 反应体系不均匀,
    需干燥流程
    碱金属醇淦法 先用金属钠或钾与醇反应,再与二硫化碳反应合成黄药 反应活性高,产品纯度>90%,
    副反应少
    需严格隔绝水和氧气,
    原料成本高
    下载: 导出CSV
  • [1]

    马鑫, 王帅, 林奇阳, 等. 黄药捕收剂的分子设计与绿色合成技术[J]. 有色金属(选矿部分), 2025(2): 87−95+116. doi: 10.20239/j.issn.1671-9492.2025.02.007

    MA X, WANG S, LIN Q Y, et al. Molecular design and green synthesis of xanthate collector[J]. Nonferrous Metals(Mineral Processing Section), 2025(2): 87−95+116. doi: 10.20239/j.issn.1671-9492.2025.02.007

    [2]

    PEARSE M J. An overview of the use of chemical reagents in mineral processing[J]. Minerals Engineering, 2005, 18(2): 139−149. doi: 10.1016/j.mineng.2004.09.015

    [3]

    富尔斯特瑙 D W, 魏明安, 李长根. 浮选百年[J]. 国外金属矿选矿, 2001(3): 2−9.

    FUERSTENAU D W, WEI M A, LI C G. The froth flotation century[J]. Metallic Ore Dressing Abroad, 2001(3): 2−9.

    [4]

    刘岱昕, 陈远林, 丁鸣援, 等. 碳链结构对黄药捕收剂分子量子化学性质的影响[J]. 矿产保护与利用, 2025, 45(2): 84−92. doi: 10.13779/j.cnki.issn1001-0076.2025.08.001

    LIU D X, CHEN Y L, DING M Y. Effect of carbon chain structure on the quantum chemical properties of xanthate collector molecules[J]. Conservation and Utilization of Mineral Resources, 2025, 45(2): 84−92. doi: 10.13779/j.cnki.issn1001-0076.2025.08.001

    [5]

    曹飞, 孙传尧, 王化军, 等. 烃基结构对黄药捕收剂浮选性能的影响[J]. 北京科技大学学报, 2014, 36(12): 1589−1594. doi: 10.13374/j.issn1001-053x.2014.12.004

    CAO F, SUN C Y, WANG H J, et al. Effect of alkyl structure on the flotation performance of xanthate collectors[J]. Journal of University of Science and Technology Beijing, 2014, 36(12): 1589−1594. doi: 10.13374/j.issn1001-053x.2014.12.004

    [6]

    李西山, 朱一民. 利用同分异构化学原理研究浮选药剂Y−89的同分异构体甲基异戊基黄药[J]. 湖南有色金属, 2010, 26(2): 19−21. doi: 10.3969/j.issn.1003-5540.2010.02.005

    LI X S, ZHU Y M. Use the isomeric chemistry principle to study the isomer of flotation reagent Y−89—methyl iso−penty xanthate[J]. Hunan Nonferrous Metals, 2010, 26(2): 19−21. doi: 10.3969/j.issn.1003-5540.2010.02.005

    [7]

    MCCLEVERTY J A, MEYER T J. Comprehensive coordination chemistry II[M]. Amsterdam: Elsevier Science Ltd, 2003: 349−376.

    [8]

    SHEN Y, NAGARAJ D R, FARINATO R, et al. Study of xanthate decomposition in aqueous solutions[J]. Minerals Engineering, 2016, 93: 10−15. doi: 10.1016/j.mineng.2016.04.004

    [9]

    钟宏, 曾强, 王帅. 芳香基黄原酸盐的合成及其对黄铜矿的浮选性能[J]. 矿产保护与利用, 2020, 40(2): 17−22. doi: 10.13779/j.cnki.issn1001-0076.2020.03.001

    ZHONG H, ZENG Q, WANG S. Synthesis of two aromatic xanthates and their flotation properties on chalcopyrite[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 17−22. doi: 10.13779/j.cnki.issn1001-0076.2020.03.001

    [10]

    LIN Q Y, YANG J, WANG J, et al. Water−bridged self−assembly of low−odor xanthate surfactant for selective flotation of chalcopyrite[J]. Journal of Molecular Liquids, 2024, 398: 124246. doi: 10.1016/j.molliq.2024.124246

    [11]

    WANG W F, MA X, LIN Q Y, et al. A green flotation collector towards efficient separation of chalcopyrite from pyrite with high selectivity[J]. Minerals Engineering, 2023, 201: 108227. doi: 10.1016/j.mineng.2023.108227

    [12]

    钟宏, 吴玉琨, 王帅, 等. 一种硫脲基二硫代碳酸盐捕收剂及其制备方法与浮选应用: CN115945298B[P]. 2025−04−15.

    ZHONG H, WU Y K, WANG S, et al. A thiourea dithiocarbonate collector, its preparation method, and application in flotation: CN115945298B[P]. 2025−04−15.

    [13]

    HUANG X P, JIA Y, WANG S, et al. Novel sodium O−benzythioethyl xanthate surfactant: Synthesis, DFT calculation and adsorption mechanism on chalcopyrite surface[J]. Langmuir, 2019, 35(47): 15106−15113. doi: 10.1021/acs.langmuir.9b03118

    [14]

    钟宏, 张湘予, 马鑫, 等. 酰氨基黄药的制备及其对黄铜矿、黄铁矿的浮选性能研究[J]. 矿产保护与利用, 2021, 41(2): 13−22. doi: 10.13779/j.cnki.issn1001-0076.2021.02.003

    ZHONG H, ZHANG X Y, MA X, et al. Study on the preparation of amido xanthate and its flotation performance for chalcopyrite and pyrite[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 13−22. doi: 10.13779/j.cnki.issn1001-0076.2021.02.003

    [15]

    LIN Q Y, YANG J, WANG S, et al. A novel bipolar surfactant, BETX, for selective flotation of chalcopyrite: Folding−synergistic mechanism based on intramolecular weak interactions[J]. Industrial & Engineering Chemistry Research, 2024, 63(7): 3114−3126. doi: 10.1021/acs.iecr.3c04216

    [16]

    YANG F, SUN W, HU Y H. QSAR analysis of selectivity in flotation of chalcopyrite from pyrite for xanthate derivatives: Xanthogen formates and thionocarbamates[J]. Minerals Engineering, 2012, 39: 140−148. doi: 10.1016/j.mineng.2012.06.001

    [17]

    XIONG W, WANG W F, ZHONG H, et al. QSAR study on molecular design and flotation prediction of collectors for copper sulfide[J]. Minerals Engineering, 2025, 222: 109152. doi: 10.1016/j.mineng.2024.109152

    [18]

    钟宏. 浮选药剂的产品设计与工程[J]. 有色金属(选矿部分), 2025(2): 1−7. doi: 10.20239/j.issn.1671-9492.2025.02.001

    ZHONG H. Product design and engineering of flotation reagents[J]. Nonferrous Metals(Mineral Processing Section), 2025(2): 1−7. doi: 10.20239/j.issn.1671-9492.2025.02.001

    [19]

    仵亚妮, 冯卫国, 吴庆伟, 等. 液体黄药生产工艺的改进及其选矿实验[J]. 化工生产与技术, 2014, 21(4): 17−18+47+10. doi: 10.3969/j.issn.1006-6829.2014.04.006

    WU Y N, FENG W G, WU Q W, et al. The process improvement and mineral processing experiment of liquid xanthate[J]. Chemical Production and Technology, 2014, 21(4): 17−18+47+10. doi: 10.3969/j.issn.1006-6829.2014.04.006

    [20]

    朱继生. 新型甲基异戊基复合黄药研制及其浮选性能评价[J]. 有色金属(选矿部分), 2006(5): 47−49. doi: 10.3969/j.issn.1671-9492.2006.05.013

    ZHU J S. New methylic isoamyl multiplex xanthate development and it's flotaion capability evaluation[J]. Nonferrous Metals(Mineral Processing Section), 2006(5): 47−49. doi: 10.3969/j.issn.1671-9492.2006.05.013

    [21]

    马英强, 李诗澜, 宋振国, 等. 异戊基黄药与水杨羟肟酸对硅孔雀石硫化浮选行为的影响[J]. 金属矿山, 2023(4): 117−123. doi: 10.19614/j.cnki.jsks.202304019

    MA Y Q, LI S L, SONG Z G, et al. Effect of isoamyl xanthate and salicylhydroxamic acid on sulfurized flotation behavior of chrysocolla[J]. Metal Mine, 2023(4): 117−123. doi: 10.19614/j.cnki.jsks.202304019

    [22]

    曾茂青, 单勇, 赵培樑. 氧化铜矿浮选复合捕收剂及其制备工艺和应用: CN107350085B[P]. 2019−04−12.

    ZENG M Q, SHAN Y, ZHAO P L. A composite collector for copper oxide ore flotation, its preparation process, and application: CN107350085B[P]. 2019−04−12.

    [23]

    刘龙利. 黄药的研究与应用概述[J]. 国外金属矿选矿, 2005(7): 11−12+37.

    LIU L L. Overview of the research and application of xanthates[J]. Metallic Ore Dressing Abroad, 2005(7): 11−12+37.

    [24]

    田喜双, 王永信. 黄药生产方法探讨[J]. 有色金属(选矿部分), 1991(3): 30−31.

    TIAN X S, WANG Y X. Discussion on the production methods of xanthate[J]. Nonferrous Metals(Mineral Processing Section), 1991(3): 30−31.

    [25]

    杨晓玲, 张红亮. 液体异丙基黄原酸钠的合成[J]. 应用化工, 2010, 39(6): 895−897. doi: 10.3969/j.issn.1671-3206.2010.06.031

    YANG X L, ZHANG H L. Synthesis of liquid sodium isopropyl xanthogenate[J]. Applied Chemical Industry, 2010, 39(6): 895−897. doi: 10.3969/j.issn.1671-3206.2010.06.031

    [26]

    马鑫, 钟宏, 王帅, 等. 溶剂法合成异丁基黄原酸钠[J]. 江西理工大学学报, 2012, 33(5): 1−5. doi: 10.13265/j.cnki.jxlgdxxb.2012.05.020

    MA X, ZHONG H, WANG S, et al. Synthesis of sodium iso−butyl xanthate by solvent method[J]. Journal of Jiangxi University of Science and Technology, 2012, 33(5): 1−5. doi: 10.13265/j.cnki.jxlgdxxb.2012.05.020

    [27]

    施先义, 覃雪媚, 邓钟燕. 丁基钠黄药合成工艺的改进[J]. 化工技术与开发, 2006(4): 47−48. doi: 10.3969/j.issn.1671-9905.2006.04.013

    SHI X Y, QIN X M, DENG Z Y. Improvement on synthesis process of sodium n−butyl xanthate[J]. Technology & Development of Chemical Industry, 2006(4): 47−48. doi: 10.3969/j.issn.1671-9905.2006.04.013

    [28]

    MA X, WANG S, ZHONG H. Effective production of sodium isobutyl xanthate using carbon disulfide as a solvent: Reaction kinetics, calorimetry and scale−up[J]. Journal of Cleaner Production, 2018, 200: 444−453. doi: 10.1016/j.jclepro.2018.07.251

    [29]

    WANG X J, CHEN M X, MA L Y, et al. Degradation of residual xanthates in mineral processing wastewater−A review[J]. Minerals Engineering, 2024, 212: 108717. doi: 10.1016/j.mineng.2024.108717

    [30]

    王帅, 李了艳, 段广宇, 等. 轻质油改性起泡剂环己二醇单戊醚的起泡与浮选性能[J]. 有色金属(选矿部分), 2025(2): 168−174. doi: 10.20239/j.issn.1671-9492.2025.02.015

    WANG S, LI L Y, DUAN G Y, et al. Foaming and flotation performance of cyclohexanol monoamyl ether frother modified from light oil[J]. Nonferrous Metals(Mineral Processing Section), 2025(2): 168−174. doi: 10.20239/j.issn.1671-9492.2025.02.015

    [31]

    张帅, 王宇斌, 雷大士, 等. 气溶胶化丁基黄药强化黄铁矿浮选回收机理研究[J]. 矿产保护与利用, 2024, 44(1): 53−60. doi: 10.13779/j.cnki.issn1001-0076.2024.01.007

    ZHANG S, WANG Y B, LEI D S, et al. Flotation mechanism of pyrite enhanced by aerosolized butyl xanthate[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 53−60. doi: 10.13779/j.cnki.issn1001-0076.2024.01.007

    [32]

    王传龙, 于传兵, 康金星, 等. 某氧硫混合型铜矿浮选工艺研究[J]. 有色金属(选矿部分), 2021(3): 93−98+103. doi: 10.3969/j.issn.1671-9492.2021.03.016

    WANG C L, YU C B, KANG J X, et al. Study on flotation process of an oxygen−sulfur mixed copper ore[J]. Nonferrous Metals(Mineral Processing Section), 2021(3): 93−98+103. doi: 10.3969/j.issn.1671-9492.2021.03.016

    [33]

    陈建华. 浮选捕收剂的结构及其作用机理研究[J]. 矿产保护与利用, 2017(4): 98−106. doi: 10.13779/j.cnki.issn1001-0076.2017.04.020

    CHEN J H. Structure and mechanism of flotation collectors[J]. Conservation and Utilization of Mineral Resources, 2017(4): 98−106. doi: 10.13779/j.cnki.issn1001-0076.2017.04.020

    [34]

    CHAURASIYA A, PANDE P P, DEY K K, et al. Synthesis and characterization of novel β−CD−xanthate and its application in the treatment of heavy metal containing wastewater and lignin enriched paper industry wastewater[J]. International Journal of Environmental Analytical Chemistry, 2024, DOI: 10.1080/03067319.2024.2338278.

    [35]

    张郭阳, 杨志超, 滕青, 等. 黄原胶−丁基黄药协同去除模拟选矿废水中Cu(Ⅱ)的试验研究[J]. 金属矿山, 2023(3): 259−265. doi: 10.19614/j.cnki.jsks.202303035

    ZHANG G Y, YANG Z C, TENG Q, et al. Experimental study on synergistic removal of Cu(Ⅱ) in simulated mineral processing wastewater by xanthan gum and butyl xanthate[J]. Metal Mine, 2023(3): 259−265. doi: 10.19614/j.cnki.jsks.202303035

    [36]

    SONG S L, SUN W, WANG L, et al. Recovery of cobalt and zinc from the leaching solution of zinc smelting slag[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102777. doi: 10.1016/j.jece.2018.11.022

    [37]

    孙思琦, 黄齐茂. 新型黄原酸盐重金属离子螯合剂的合成[J]. 工业水处理, 2020, 40(11): 41−44.

    SUN S Q, HUANG Q M. Synthesis of a novel xanthate heavy metal ion chelating agent[J]. Industrial Water Treatment, 2020, 40(11): 41−44.

    [38]

    蔡春林, 覃文庆, 邱冠周, 等. 异丙基黄原酸甲酸乙酯的合成及应用[J]. 矿业工程, 2006(4): 39−40. doi: 10.3969/j.issn.1671-8550.2006.04.018

    CAI C L, QIN W Q, QIU G Z, et al. Study on synthesis and floatation of isopropyl xanthogen ethyl formate[J]. Mining Engineering, 2006(4): 39−40. doi: 10.3969/j.issn.1671-8550.2006.04.018

    [39]

    MA X, XIA L Y, WANG S, et al. Structural modification of xanthate collectors to enhance the flotation selectivity of chalcopyrite[J]. Industrial & Engineering Chemistry Research, 2017, 56(21): 6307−6316. doi: 10.1021/acs.iecr.6b04566

    [40]

    PALATY S, JOSEPH R. Xanthate accelerators for low temperature curing of natural rubber[J]. Journal of Applied Polymer Science, 2000, 78(10): 1769−1775. doi: 10.1002/1097-4628(20001205)78:10<1769::AID-APP80>3.0.CO;2-H

    [41]

    薛丽慧, 程原, 吕明哲, 等. 黄原酸盐类促进剂对天然胶乳硫化和硫化胶膜力学性能的影响[J]. 橡胶工业, 2019, 66(9): 669−674. doi: 10.12136/j.issn.1000-890X.2019.09.0669

    XUE L H, CHENG Y, LYU M Z, et al. Effect of xanthate accelerators on natural latex vulcanization and mechanical properties of vulcanized film[J]. China Rubber Industry, 2019, 66(9): 669−674. doi: 10.12136/j.issn.1000-890X.2019.09.0669

    [42]

    HU Z Y, DENG L H, WU T J, et al. Compositional engineering of metal−xanthate precursors toward (Bi1−xSbx)2S3 (0≤x≤0.05) films with enhanced room temperature thermoelectric performance[J]. Journal of Materials Chemistry C, 2022, 10(5): 1718−1726. doi: 10.1039/D1TC04394C

    [43]

    VAKALOPOULOU E, KNEZ D, SIGL M, et al. A colloidal synthesis route towards AgBiS2 nanocrystals based on metal xanthate precursors[J]. ChemNanoMat, 2023, 9(2): e202200414. doi: 10.1002/cnma.202200414

    [44]

    WU J L, YE H L, HU Y P, et al. Xanthate−mediated oxidation of Li2S as the lithium−containing cathode in lithium−sulfur batteries with extremely low overpotential[J]. Advanced Materials, 2024, 36: 2411525. doi: 10.1002/adma.202411525

    [45]

    李海洋, 吴庆伟. 选矿废水中微量丁基黄药的降解处理研究[J]. 中国钼业, 2024, 48(5): 38−40+64. doi: 10.13384/j.cnki.cmi.1006-2602.2024.05.007

    LI H Y, WU Q W. Degradation treatment of trace butyl xanthate in flotation effluent[J]. China Molybdenum Industry, 2024, 48(5): 38−40+64. doi: 10.13384/j.cnki.cmi.1006-2602.2024.05.007

    [46]

    祝瑄, 杨志超, 滕青, 等. 微生物絮凝剂对废水中黄药和铅离子的去除[J]. 中国矿业大学学报, 2022, 51(5): 978−987. doi: 10.13247/j.cnki.jcumt.001418

    ZHU X, YANG Z C, TENG Q, et al. Removal of xanthate and lead ions from wastewater by microbial flocculant[J]. Journal of China University of Mining & Technology, 2022, 51(5): 978−987. doi: 10.13247/j.cnki.jcumt.001418

    [47]

    SALARIRAD M M, BEHNAMFARD A, VEGLIO F. Removal of xanthate from aqueous solutions by adsorption onto untreated and acid/base treated activated carbons[J]. Desalination and Water Treatment, 2021, 212: 220−233. doi: 10.5004/dwt.2021.26683

    [48]

    吴永明, 沈紫飞, 李昆, 等. 基于O3/AC耦合工艺对丁基黄药与COD的同步去除性能及降解机理[J]. 环境工程学报, 2023, 17(9): 2899−2908.

    WU Y M, SHEN Z F, LI K, et al. Performance and mechanism analysis of simultaneous removal of butyl xanthate and COD based on O3/AC combined process[J]. Chinese Journal of Environmental Engineering, 2023, 17(9): 2899−2908.

    [49]

    GARCÍA−LEIVA B, TEIXEIRA L A C, TOREM M L. Degradation of xanthate in waters by hydrogen peroxide, fenton and simulated solar photo−fenton processes[J]. Journal of Materials Research and Technology, 2019, 8(6): 5698−5706. doi: 10.1016/j.jmrt.2019.09.037

    [50]

    BAO H J, WU M R, MENG X S, et al. Electrochemical oxidation degradation of xanthate and its mechanism: Effects of carbon chain length and electrolyte type[J]. Journal of Cleaner Production, 2024, 448: 141626. doi: 10.1016/j.jclepro.2024.141626

    [51]

    姜彬慧, 黄娅琼, 王宇佳, 等. 采用膜生物反应器处理丁基黄药废水[J]. 中南大学学报(自然科学版), 2013, 44(7): 3072−3079.

    JIANG B H, HUANG Y Q, WANG Y J, et al. Treatment of butyl xanthogenate wastewater by membrane bioreactor[J]. Journal of Central South University (Science and Technology), 2013, 44(7): 3072−3079.

    [52]

    LIN H, QIN K J, DONG Y B, et al. A newly−constructed bifunctional bacterial consortium for removing butyl xanthate and cadmium simultaneously from mineral processing wastewater: Experimental evaluation, degradation and biomineralization[J]. Journal of Environmental Management, 2022, 316: 115304. doi: 10.1016/j.jenvman.2022.115304

    [53]

    彭映林, 余旺, 郑雅杰, 等. 复合磁絮凝剂的制备及其对黄药废水的处理[J]. 中国有色金属学报, 2018, 28(8): 1676−1687. doi: 10.19476/j.ysxb.1004.0609.2018.08.23

    PENG Y L, YU W, ZHEN Y J, et al. Preparation of composite magnetic flocculant and its application in treatment of butyl xanthate wastewater[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(8): 1676−1687. doi: 10.19476/j.ysxb.1004.0609.2018.08.23

  • 加载中

(4)

(2)

计量
  • 文章访问数:  53
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2025-04-19
刊出日期:  2025-06-15

目录