Selective Depression Effect and Mechanism of Polyepoxy Succinic Acid in the Flotation Separation of Bastnaesite and Fluorite
-
摘要:
稀土浮选中氟碳铈矿与萤石因表面化学性质相似而导致分离较为困难。以聚环氧琥珀酸[PESA,(C4H4O5)n]为选择性抑制剂,通过单矿物和实际矿石(白云鄂博磁选铁尾矿)浮选实验考察了其对氟碳铈矿和萤石可浮性的影响,并采用Zeta电位、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)等分析了其作用机理。浮选实验结果表明:在单矿物浮选条件下,以油酸钠(NaOL)为捕收剂,氟碳铈矿和萤石的回收率均在90%以上;采用40 mg/L PESA为抑制剂时,氟碳铈矿的回收率为98.65%,而萤石的回收率几乎降至零。在实际矿石浮选时,以P8为捕收剂、水玻璃和PESA为抑制剂、2#油为起泡剂,获得了REO、CaO含量分别为57.27%、4.50%,REO回收率为52.10%的稀土精矿;与未添加PESA相比,稀土精矿中REO含量提高了1.92百分点,而CaO含量则降低了5.48百分点。机理分析结果表明:添加PESA后,氟碳铈矿的Zeta电位发生了负移,但红外吸收峰及表面原子的结合能偏移不显著,其在氟碳铈矿表面的吸附主要是物理吸附,化学吸附较弱,NaOL仍然可吸附到氟碳铈矿表面,使其保持良好的可浮性;而萤石的Zeta电位、红外吸收峰及表面原子的结合能均发生了明显的偏移,其在萤石表面的吸附作用存在化学键合作用,阻碍了NaOL在萤石表面的吸附,使其可浮性显著降低。该研究为氟碳铈矿与萤石的高效浮选分离提供了新的药剂制度参考。
Abstract:The separation of bastnaesite from fluorite during the flotation process of rare earth minerals presents significant challenges due to the similarities in their surface chemical properties. This study investigates the effectiveness of polyepoxysuccinic acid (PESA, C4H4O5)n) as a selective depressant, and assesses its effect on the floatability of bastnaesite and fluorite through both single mineral and actual ore flotation experiments, specifically using magnetic separation of iron tailings from Baiyun Obo. The underlying mechanisms were investigated using Zeta potential measurements, Fourier−transform infrared spectroscopy (FTIR), and X−ray photoelectron spectroscopy (XPS). The results of flotation experiment indicate that, under single mineral flotation conditions with sodium oleate (NaOL) as the collector, recoveries of both bastnaesite and fluorite exceed 90%. When 40 mg/L of PESA is used as an inhibitor, the recovery of bastnaesite reaches 98.65%, while the recovery of fluorite drops to almost zero. In practical ore flotation scenarios, employing P8 as the collector, together with water glass and PESA as the inhibitors, and 2# oil as the frother, results in a rare earth concentrate with rare earth oxide (REO) and CaO contents of 57.27% and 4.50%, respectively, achieving a recovery rate of 52.10%. The introduction of PESA contributes to an increase of 1.92 percentage points in the REO content of the concentrate, and a reduction of 5.48 percentage points in CaO content compared to conditions without PESA. Mechanistic analyses indicate that the introduction of PESA results in a negative alteration of the Zeta potential of bastnaesite; however, no significant changes are observed in the infrared absorption peaks or the binding energy of the surface atoms. The adsorption occurring on the bastnaesite surface is predominantly characterized as physical adsorption, with limited evidence of chemical adsorption. Consequently, NaOL continues to adsorb on the bastnaesite surface, thereby maintaining its favorable floatability. In contrast, the Zeta potential, infrared absorption peaks, and binding energy of the surface atoms of fluorite show significant changes, suggesting a chemical bonding effect during the adsorption process on the fluorite surface. This effect inhibits the adsorption of NaOL on fluorite, resulting in a marked decrease in its floatability. This study provides new insights into the reagent scheme for effective separation of bastnaesite and fluorite.
-
Key words:
- polyepoxysuccinic acid /
- depressant /
- bastnaesite /
- fluorite /
- flotation
-
-
表 1 氟碳铈矿样品的化学多元素分析结果
Table 1. Multi−element chemical analysis of bastnaesite sample
/% 化学成分 REO CaO F TFe Al2O3 含量 70.94 2.30 7.77 0.26 <0.05 表 2 氟碳铈矿样品的配分分析结果
Table 2. Distribution analysis of rare earth elements in bastnaesite ore samples
/% 稀土
配分REO Y2O3 La2O3 CeO2 Pr6O11 Nd2O5 Sm2O3 Eu2O3 含量 70.94 0.18 31.40 48.95 4.51 13.13 1.14 0.22 稀土
配分Gd2O3 Tb4O7 Dy2O3 Ho2O3 Er2O3 Tm2O3 Yb2O3 Lu2O3 含量 0.42 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 表 3 萤石样品的化学多元素分析
Table 3. Multi−element chemical analysis of fluorite sample
/% 化学成分 F CaO BaO REO TFe MgO 含量 46.45 68.25 0.98 1.51 0.19 <0.10 表 4 铁尾矿样品的化学多元素分析结果
Table 4. Multi−element chemical analysis of iron beneficiation tailings sample
/% 化学
成分REO TFe CaO BaO SiO2 Al2O3 P2O5 F MgO Nb2O5 含量 9.34 9.78 25.26 4.50 14.52 0.83 3.40 16.15 3.44 0.13 表 5 铁尾矿样品中主要矿物的含量
Table 5. Content of major minerals in iron tailings sample
/% 矿物 氟碳
铈矿独居石 萤石 辉石 石英 云母 黄铁矿 含量 6.93 3.81 26.37 12.87 6.16 6.06 1.47 矿物 长石 闪石 磁铁矿 磷灰石 重晶石 白云石 方解石 含量 2.19 6.17 2.66 4.63 4.68 7.65 3.41 表 6 铁尾矿浮选实验结果
Table 6. Flotation test results for iron tailings
/% 产品名称 抑制剂 产率 品位 回收率 REO CaO REO CaO 稀土精矿 添加PESA 8.49 57.27 4.50 52.10 1.51 未添加 PESA 8.86 55.35 9.98 52.50 3.50 尾矿 添加PESA 91.51 4.89 27.19 47.90 98.49 未添加 PESA 91.14 4.87 26.75 47.50 96.50 给矿 100.00 9.34 25.26 100.00 100.00 -
[1] 易璐, 李云云, 谢柳燕, 等. 全球稀土产业链贸易格局演化与出口竞争力研究[J]. 中国矿业, 2024, 33(6): 53−62. doi: 10.12075/j.issn.1004-4051.20230962
YI L, LI Y Y, XIE L Y, et al. A study on the evolution of the global rare earth industry chain trade structure and export competitiveness[J]. China Mining, 2024, 33(6): 53−62. doi: 10.12075/j.issn.1004-4051.20230962
[2] 郭泽航, 申培伦, 何海洋, 等. 氟碳铈矿与含钙矿物浮选分离药剂研究进展[J/OL]. 中国稀土学报, 1−15 [2025−03−26]. http://kns.cnki.net/kcms/detail/11.2365.TG.20240520.1500.006.html.
GUO Z H, SHEN P L, HE H Y, et al. Research progress on reagents for the flotation separation of bastnaesite minerals and calcium−containing minerals [J/OL]. Journal of Rare Earths, 1−15 [2025−03−26]. http://kns.cnki.net/kcms/detail/11.2365.TG.20240520.1500.006.html.
[3] U. S. Geological SurveyRare Earths Statistics and Information [EB/OL]. 2024. https://www.usgs.gov/centers/national−minerals−information−center/rare−earths−statistics−and−information.
[4] CAO Z, CAO Y D, QU Q Q. Separation of bastnasite from fluorite using ethylenediamine tetraacetic acid as depressant [J]. Mineral Engineering, 2019, 134: 134−141.
[5] DA S, LI W B, HAN Y X. Fluorite flotation separation from bastnaesite via an eco−friendly polymer as a depressant and insight into its mechanism of adsorption[J]. Journal of Molecular Liquids, 2023, 376: 121368. doi: 10.1016/j.molliq.2023.121368
[6] 林一明, 王维清, 蒋颖, 等. 硅酸钠对氟碳铈矿和萤石的抑制机理研究[J]. 稀土, 2020, 41(3): 78−85.
LIN Y M, WANG W Q, JIANG Y, et al. Study on the inhibition mechanism of sodium silicate on bastnaesite ore and fluorite[J]. Journal of Rare Earths, 2020, 41(3): 78−85.
[7] CAO Z, CAO Y D, QU Q Q, et al. Separation of bastnaesite from fluorite using ethylenediamine tetraacetic acid as depressant. Minerals Engineering, 2019, 134, 134−141.
[8] 刘会媛, 石春杰, 柳鑫华, 等. 聚环氧琥珀酸衍生物在酸介质中的缓蚀性能[J]. 工业水处理, 2025, 45(3): 137−143.
LIU H Y, SHI C J, LIU X H, et al. The corrosion inhibition performance of cyclic epoxy succinate derivatives in acidic media[J]. Industrial Water Treatment, 2025, 45(3): 137−143.
[9] LIU C, WANG X, YANG S Y, et al. Utilization of polyepoxysuccinic acid as a green depressant for the flotation separation of smithsonite from calcite[J]. Mineral Engineering, 2021, 168: 106933. doi: 10.1016/j.mineng.2021.106933
[10] CHEN C, HU Y H, ZHU H L, et al. Inhibition performance and adsorption of polycarboxylic acids in calcite flotation[J]. Mineral Engineering, 2019, 133: 60−68. doi: 10.1016/j.mineng.2018.12.027
[11] 沈智慧, 张覃, 卯松, 等. 脂肪酸结构对胶磷矿表面润湿性的影响研究[J]. 矿产保护与利用, 2018(3): 105−111.
SHEN Z H, ZHANG Q, MAO S, et al. Research on the influence of fatty acid structures on the wettability of collophane surfaces[J]. Mineral Protection and Utilization, 2018(3): 105−111.
[12] 骆斌斌. α−醚胺基脂肪酸分子结构设计及其捕收机理研究[D]. 沈阳: 东北大学, 2017.
LUO B B. Study on the molecular structure design of α−ether amine fatty acids and their capture mechanism [D]. Shenyang: Northeast University, 2017.
[13] 陈雯, 许海峰, 周瑜林. 新型醚酸捕收剂CY−1对绿泥石的浮选作用机理及在铁矿反浮选中的应用[J]. 中国有色金属学报, 2020, 30(11): 2714−2725. doi: 10.11817/j.ysxb.1004.0609.2020-37599
CHEN W, XU H F, ZHOU Y L. The mechanism of action of the novel ether acid collector CY−1 on the flotation of chlorite and its application in reverse flotation of iron ore[J]. Journal of the Chinese Society of Metals, 2020, 30(11): 2714−2725. doi: 10.11817/j.ysxb.1004.0609.2020-37599
[14] ZHANG W C, RICK Q HONAKER. Flotation of monazite in the presence of calcite part II: Enhanced separation performance using sodium silicate and EDTA[J]. Mineral Engineering, 2018, 127: 318−328. doi: 10.1016/j.mineng.2018.01.042
[15] MARION C, LI R H, WATERS E KRISTIAN. A review of reagents applied to rare−earth mineral flotation[J]. Advances in Colloid and Interface Science, 2020, 279: 102142. doi: 10.1016/j.cis.2020.102142
[16] NAMBAJE C, MWEENE L, SUBRAMANIAN SAJEEV, et al. Xanthan gum based investigations into the surface chemistry of cassiterite and beneficiation of cassiterite tailings[J]. Mineral Processing and Extractive Metallurgy Review, 2022, 43(2): 150−164.
[17] 仝丽娟. DLJ型捕收剂的合成及其捕收性能研究[D]. 沈阳: 东北大学, 2011.
TONG L J. Study on the synthesis and collecting performance of DLJ−type collectors[D]. Shenyang: Northeastern University, 2011.
[18] 朱奥妮, 唐远, 李倩倩, 等. 抑制剂PBTCA对菱镁矿与白云石浮选分离的影响[J]. 金属矿山, 2023(8): 131−136.
ZHU A N, TANG Y, LI Q Q, et al. The effect of the inhibitor PBTCA on the flotation separation of magnesite and dolomite[J]. Journal of Metallic Mines, 2023(8): 131−136.
[19] ZHANG C H, HU Y H, SUN W, et al. Effect of phytic acid on the surface properties of scheelite and fluorite for their selective flotation[J]. Colloid Surface A: Physicochemical and Engineering Aspects, 2019, 573: 80−87. doi: 10.1016/j.colsurfa.2019.04.044
[20] GAO Z Y, WANG C, SUN W, et al. Froth flotation of fluorite: A review[J]. Advances in Colloid and Interface Science, 2021, 290: 102382. doi: 10.1016/j.cis.2021.102382
[21] DONG L Y, WEI Q, JIAO F, et al. Utilization of polyepoxysuccinic acid as the green selective depressant for the clean flotation of phosphate ores[J]. Journal of Cleaner Production, 2021, 282: 124532. doi: 10.1016/j.jclepro.2020.124532
[22] JALAB R, ALI A B, KHALED M, et al. Novel polyepoxysuccinic acid−grafted polyacrylamide as a green corrosion inhibitor for carbon steel in acidic solution [J]. ACS Omega, 2023, 8: 16673–16686.
[23] XIONG W L, DENG J, ZHAO K L, et al. Bastnaesite, barite, and calcite flotation behaviors with salicylhydroxamic acid as the collector[J]. Minerals, 2020, 10(3): 282. doi: 10.3390/min10030282
[24] WANG Z J, WU H Q, YANG J, et al. Selective flotation separation of bastnaesite from calcite using xanthan gum as a depressant[J]. Applied Surface Science, 2020, 512: 145714. doi: 10.1016/j.apsusc.2020.145714
[25] XU Y B, XU L H, WU H Q, et al. Flotation and co–adsorption of mixed collectors octanohydroxamic acid/sodium oleate on bastnaesite[J]. Journal of Alloys and Compounds, 2020, 819: 152948. doi: 10.1016/j.jallcom.2019.152948
[26] BÊCHE , CHARVIN P, PERARNAU D, et al. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz)[J]. Surface and Interface Analysis, 2008, 40(3/4): 264−267.
[27] GUO C L, HOU S C, WANG W W, et al. Surface chemistry of xanthan gum interactions with bastnaesite and fluorite during flotation[J]. Mineral Engineering, 2022, 189: 107891. doi: 10.1016/j.mineng.2022.107891
[28] GUO C L, HOU S C, WANG W W, et al. Effect of an environment−friendly depressant on the flotation of bastnaesite and fluorite[J]. Minerals, 2024, 14(2): 165. doi: 10.3390/min14020165
[29] GUO C L, HOU S C, JIN H L, et al. Adsorption of tannic acid as depressant in the flotation separation of fluorite and bastnaesite[J]. Mineral Processing and Extractive Metallurgy, 2023, 132(3/4): 172−184.
-