-
摘要:
我国赤铁矿资源质量不高,嵌布粒度细,伴生大量物理化学性质与铁矿物相近的含铁硅酸盐类脉石矿物,进入铁精矿的二氧化硅含量过高不仅会降低高炉利用率,增加后续冶炼能耗,还会导致碱性造渣溶剂耗量增加,由此赤铁矿与含硅脉石的分离具有重大意义,浮选是目前脱除含硅脉石矿物的主要方法之一。综述了近年来赤铁矿脱硅浮选的研究现状,介绍了赤铁矿资源的分布情况,总结了赤铁矿及其含硅脉石矿物晶体及其表面特征。主要归纳了赤铁矿脱硅浮选捕收剂及调整剂的研究进展,介绍了捕收剂、抑制剂、活化剂的种类和分选机理,总结了各类赤铁矿选矿药剂的优缺点,探讨了赤铁矿脱硅药剂未来的主要研究方向,为难选赤铁矿脱硅浮选提供参考。
Abstract:The quality of hematite resources in China is not high. Its embedded particle size is fine, and a large number of iron−containing silicate gangue minerals with similar physical and chemical properties to iron minerals are associated. The excessive content of silica entering iron concentrate will not only reduce the utilization rate of blast furnace and increase the energy consumption of subsequent smelting, but also lead to the increase of the consumption of alkaline slagging solvent. Therefore, the separation of hematite and silicon−containing gangue is of great significance. Flotation is one of the main methods to remove silicon−containing gangue minerals. This paper reviews the research status of hematite desilication flotation in recent years, introduces the distribution of hematite resources, and summarizes the crystal and surface characteristics of hematite and its silicon−containing gangue minerals. This paper mainly summarizes the research progress of collectors and regulators in hematite desilication flotation, including the types and separation mechanism of collectors, depressants and activators. Meanwhile, it summarizes the advantages and disadvantages of various hematite reagents, and discusses the main research directions of hematite desilication reagents in the future, so as to provide reference for the desilication flotation of refractory hematite.
-
Key words:
- hematite /
- desiliconization /
- flotation /
- collector /
- depressant
-
-
[1] 杨晓峰, 马玉宁, 陈宇, 等. 组合捕收剂DYN−3在铁矿石浮选脱硅中的性能研究[J]. 金属矿山, 2023(4): 103−109.
YANG X F, MA Y N, CHEN Y, et al. Study on the performance of combined collector DYN−3 in iron ore desilication flotation[J]. Metal Mine, 2023(4): 103−109.
[2] 中华人民共和国自然资源部. 中国矿产资源报告2022[M]. 北京: 地质出版社, 2022: 6.
Ministry of Natural Resources. China mineral resources report 2022[M]. Beijing: Geological Publishing House, 2022: 6.
[3] 荆茂晨, 安登极, 王纪镇. 赤铁矿与石英浮选溶液化学与药剂作用机制研究进展[J]. 矿产保护与利用, 2023, 43(6): 120−129.
JING M C, AN D J, WANG J Z. Research progress on flotation solution chemistry and mechanism of reagents of hematite and quartz[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 120−129.
[4] YU R J, YANG H T, YU X H, et al. Extraction and separation of iron technology and research progress[J]. Separation and Purification Technology, 2024, 334: 125985.
[5] YANG Z X, LI Y, WANG X T, et al. Facet−dependent activation of oxalic acid over hematite nanocrystals under the irradiation of visible light for efficient degradation of pollutants[J]. Journal of Environmental Sciences, 2024, 142: 204−214.
[6] 世界钢铁协会. 2023年世界钢铁统计数据[EB/OL]. [2024−05−18]. https://worldsteel.org/data/world−steel−in−figures−2023/
World Steel Association. 2023 World steel statistics[EB/OL]. [2024−05−18]. https://worldsteel.org/data/world−steel−in−figures−2023/
[7] HAN H L, YIN W Z, YANG B, et al. Adsorption behavior of sodium oleate on iron minerals and its effect on flotation kinetics[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647: 129108.
[8] ZHANG X L, GU X T, HAN Y X, et al. Flotation of iron ores: A review[J]. Mineral Processing and Extractive Metallurgy Review, 2019(2): 1−29.
[9] ANONYMOUS. Iron ore: Mineralogy, processing and environmental sustainability[M]. Amsterdam: Elsevier, 2015: 1−6.
[10] LI Q F, WEN B J, WANG G S, et al. Study on calculation of carbon emission factors and embodied carbon emissions of iron−containing commodities in international trade of China[J]. Journal of Cleaner Production, 2018, 191: 119−126.
[11] U.S. Geological Survey. Minerals Yearbook[R]. 2024.
[12] 陈宏. 世界铁矿石资源和生产概况[J]. 钢铁, 2001(11): 69−73. doi: 10.3321/j.issn:0449-749X.2001.11.018
CHENG H. Sscenario of world iron ore resources and production[J]. Iron and Steel, 2001(11): 69−73. doi: 10.3321/j.issn:0449-749X.2001.11.018
[13] 许满兴. 中国鲕状赤铁矿资源的特征与开发利用[J]. 烧结球团, 2011, 36(3): 24−27.
XU M X. Characteristics of oolitic hematite resources in china and its development and utilization[J]. Sintering and Pelletizing, 2011, 36(3): 24−27.
[14] 唐雪峰. 难处理赤铁矿选矿技术研究现状及发展趋势[J]. 现代矿业, 2014, 30(3): 14−19. doi: 10.3969/j.issn.1674-6082.2014.03.005
TANG X F. Research status and development trend of beneficiation technology on complex hematite[J]. Modern Mining, 2014, 30(3): 14−19. doi: 10.3969/j.issn.1674-6082.2014.03.005
[15] 张甜甜. 高磷鲕状赤铁矿气基还原提铁降磷试验研究[D]. 西安: 西安建筑科技大学, 2023.
ZHANG T T. Experimental Study on iron extraction and phosphorus reduction by gas−based reduction of high−phosphorus ooolitic hematite[D]. Xi’an: Xi’an University of Architecture and Technology, 2023.
[16] 金丹. 微细粒绿泥石对赤铁矿反浮选过程浮选特性的影响[D]. 鞍山: 辽宁科技大学, 2023.
JIN D. Effect of fine chlorite on flotation characteristics of hematite in reverse flotation process[D]. Anshan: University of Science and Technology Liaoning, 2023.
[17] 张行荣, 郑桂兵, 艾晶, 等. 赤铁矿反浮选淀粉抑制作用第一性原理[J]. 中国有色金属学报, 2016, 26(2): 465−470.
ZHANG X R, ZHENG G B, AI J, et al. First−principles of depressing mechanism of starch in reverse−flotation of hematite[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(2): 465−470.
[18] 宗美荣. 赤铁矿晶形调控和表界面作用机制研究[D]. 南京: 南京大学, 2021.
ZONG M R. Crystal facets regulation and interfacial interaction mechanism of hematite[D]. Nanjing: Nanjing University, 2021.
[19] 刘文宝. 赤铁矿反浮选高选择性阳离子捕收剂的合成及浮选性能研究[D]. 沈阳: 东北大学, 2020.
LIU W B. Synthesis and flotation performance of high selective cationic collector for hematite reverse flotation[D]. Shenyang: Northeastern University, 2020.
[20] 魏德洲. 固体物料分选学[M]. 北京: 冶金工业出版社, 2015.
WEI D Z. Sorting of solid materials[M]. Beijing: Metallurgical Industry Press, 2015.
[21] ZHANG X, ZHU Y, XIE Y, et al. A novel macromolecular depressant for reverse flotation: Synthesis and depressing mechanism in the separation of hematite and quartz[J]. Separation and Purification Technology, 2017, 186: 175−181.
[22] HONG X, LUO X M, WEN S M, et al. Flotation separation of hematite from quartz with dodecyl trimethyl ammonium chloride and sodium dodecyl sulfonate collector[J]. Journal of Environmental Chemical Engineering, 2024, 12(5): 113481.
[23] YANG B, YIN W Z, YAO J, et al. Differential adsorption of a high−performance collector at solid–liquid interface for the selective flotation of hematite from quartz[J]. Journal of Molecular Liquids, 2021, 339: 116828.
[24] YANG Z C, TENG Q, HAN Y Q. Coordination reaction triggered xanthan gum and Fe(Ⅲ) self−assembly and adsorption on hematite surface for quartz−hematite flotation separation[J]. Journal of Molecular Liquids, 2023, 390: 123126.
[25] 赵晓晨. 石英晶体之秘[J]. 地球, 2004(5): 14−15.
ZHAO X C. The secret of quartz crystal[J]. Earth, 2004(5): 14−15.
[26] 宋英昕, 李胜荣, 申俊峰, 等. 胶东三山岛北部海域金矿床石英热释光和晶胞参数特征及其找矿意义[J]. 地学前缘, 2021, 28(2): 305−319.
SONG Y X, LI S R, SHEN J F, et al. Characteristics and propecting of thermoluminescence patterns and cell parameters of quartz from the undersea gold deposit off north Sanshandao Jiaodong Peninsula[J]. Geoscience Frontier, 2021, 28(2): 305−319.
[27] 刘亚川, 龚焕高, 张克仁. 石英长石矿物结晶化学特性与药剂作用机理[J]. 中国有色金属学报, 1992(4): 21−25. doi: 10.3321/j.issn:1004-0609.1992.04.005
LIU Y C, GONG H G, ZHANG K R. Crystallization chemical characteristics and reagent action mechanism of quartz feldspar minerals[J]. Chinese Journal of Nonferrous Metals, 1992(4): 21−25. doi: 10.3321/j.issn:1004-0609.1992.04.005
[28] RATH S S, SAHOO H, DAS B, et al. Density functional calculations of amines on the (101) face of quartz[J]. Minerals Engineering, 2014, 69: 57−64.
[29] 朱一民, 骆斌斌, 孙海涛, 等. α−溴代月桂酸在石英表面吸附机理的研究[C]∥2015第六届中国矿业科技大会论文集. 四川: 中国冶金矿山企业协会矿山技术委员会, 2015: 6.
ZHU Y M, LUO B B, SUN H T, et al. Study on the adsorption mechanism of α−bromolauric acid on quartz surface[C]//Proceedings of the sixth China Mining Science and Technology Conference in 2015. Sichuan, China: Mning Technical Committee of China Metallurgical Mining Enterprises Association, 2015: 6.
[30] GU J F, CHEN W K. Adsorption of the uranyl ion on the hydroxylated &−quartz (101) surface[J]. Acta Physico−Chimica Sinica, 2014, 30(10): 1810−1820. doi: 10.3866/PKU.WHXB201408221
[31] 李海负. 紫锂辉石[J]. 珠宝科技, 2001(1): 48.
LI H F. Purple spodumene[J]. Jewelry Science and Technology, 2001(1): 48.
[32] 李鹏程. 金的络合物Au(S2O3)23−与石英、高岭石作用机理研究[D]. 鞍山: 辽宁科技大学, 2019.
LI P C. Study on mechanism of interaction of gold complex Au(S2O3)23− with quartz and kaolinite[D]. Anshan: University of Science and Technology Liaoning, 2019.
[33] 王贤晨, 张覃, 陈建华, 等. 氟磷灰石与石英表面电子性质及胺类捕收剂吸附作用研究[J]. 贵州大学学报(自然科学版), 2017, 34(6): 21−28.
WANG X C, ZHANG Q, CHEN J H, et al. Electronic properties and amine collectors effect of fluorapatite and quartz surface[J]. Journal of Guizhou University (Natural Science Edition), 2017, 34(6): 21−28.
[34] GUO Y, LIU W G, LIU W B, et al. Efficient separation of quartz from hematite for a novel quaternary ammonium collector: Separation performance, comparative study and adsorption mechanism[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 698: 134564.
[35] 张宇平. 粉石英制取电子级结晶型硅微粉的研究[D]. 长沙: 中南大学, 2007.
ZHANG Y P. Study on preparation of electronic grade crystalline silicon micropowder by powder quartz[D]. Changsha: Central South University, 2007.
[36] 冯博, 汪惠惠, 王鹏程. 铜离子和镍离子对绿泥石的抑制作用及机理[J]. 硅酸盐通报, 2015, 34(5): 1237−1240+1245.
FENG B, WANG H H, WANG P C. Depression effect and mechanism of copper ions and nickel ions on chlorite flotation[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(5): 1237−1240+1245.
[37] WANG R L, SUN WJ, HAN H S, et al. A novel fine gangue depressant: Metal ions−starch colloidal depressant and its effect on ultrafine chlorite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655: 130326.
[38] SILVESTER, BRUCKARD, WOODCOCK. Surface and chemical properties of chlorite in relation to its flotation and depression[J]. Mineral Processing and Extractive Metallurgy, 2011, 120(2): 65−70. doi: 10.1179/1743285510Y.0000000009
[39] 陈雯, 许海峰, 周瑜林. 新型醚酸捕收剂CY−1对绿泥石的浮选作用机理及在铁矿反浮选中的应用[J]. 中国有色金属学报, 2020, 30(11): 2714−2725. doi: 10.11817/j.ysxb.1004.0609.2020-37599
CHEN W, XU H F, ZHOU Y L. Flotation mechanism of novel ether acid collector CY−1 to chlorite and its application in reverse floatation of iron ores[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(11): 2714−2725. doi: 10.11817/j.ysxb.1004.0609.2020-37599
[40] 杨慧, 王振, SAFAROV S, 等. 绿泥石新型抑制剂PSSNa在钛铁矿浮选中的作用机理研究[J]. 现代矿业, 2022, 38(7): 110−114. doi: 10.3969/j.issn.1674-6082.2022.07.027
YANG H, WANG Z, SAFAROV S, et al. Mechanism and study of new chlorite inhibitor PSSNa in ilmenite flotation[J]. Modern Mining, 2022, 38(7): 110−114. doi: 10.3969/j.issn.1674-6082.2022.07.027
[41] 周东悦. 高岭石吸附Th(Ⅳ)的机理研究[D]. 南昌: 东华理工大学, 2021.
ZHOU D Y. Study on mechanism of kaolinite adsorbing of Th(Ⅳ)[D]. Nanchang: East China University of Technology, 2021.
[42] 严华山. 稀土水合离子在高岭石表面吸附行为的第一性原理研究[D]. 南昌: 江西理工大学, 2019.
YAN H S. First−principles study on the adsorption of hydrated rare earth ions on the surface of kaolinite[D]. Nanchang: Jiangxi University of Science and Technology, 2019.
[43] 魏克武. 高岭石晶体结构和表面性质[J]. 非金属矿, 1992(1): 48−53.
WEI KW. Crystal structure and surface properties of kaolinite[J]. Non−Metallic Mines, 1992(1): 48−53.
[44] 黄雯昊, 程伟. 金属阳离子对高岭石颗粒沉降影响机理研究[J]. 矿业研究与开发, 2023, 43(10): 209−216.
HUANG W H, CHENG W. The effect of metal cations on the sedimentation behavior of kaolinite particles[J]. Mining Research and Development, 2023, 43(10): 209−216.
[45] ZHANG J X, YANG C, NIU F S, et al. Molecular dynamics study on selective flotation of hematite with sodium oleate collector and starch−acrylamide flocculant[J]. Applied Surface Science, 2022, 592: 153208.
[46] WANG L , ZHOU W G , SONG S M , et al. Selective separation of hematite from quartz with sodium oleate collector and calcium lignosulphonate depressant[J]. Journal of Molecular Liquids, 2020, 322: 114502.
[47] ZHANG H L, LIN S Y, GUO Z H, et al. Selective separation mechanism of hematite from quartz by anionic reverse flotation: Implications from surface hydroxylation[J]. Applied Surface Science, 2023, 614: 156056.
[48] 李颉, 毕云霄, 丁湛, 等. 铁矿石脱硅技术和浮选药剂研究进展[J]. 矿产保护与利用, 2021, 41(5): 149−159.
LI J, BI Y X, DING Z, et al. Research progress on desilication technology and flotation reagent regime of iron ore[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 149−159.
[49] 曲国生. 关于烷基羟肟酸试选东鞍山铁矿石的研究[J]. 中国矿业, 1998(6): 82−84.
QU G S. Trial concentration of Dong'anshan mine's iron ore with alkylhydroxyoxime acid[J]. China Mining Magazine, 1998(6): 82−84.
[50] 肖玮, 邵延海, 尉佳怡, 等. 钛铁矿浮选药剂研究现状及展望[J]. 矿产保护与利用, 2021, 41(5): 160−167.
XIAO W, SHAO Y H, WEI J Y, et al. Research status and prospect of ilmenite flotation reagents[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 160−167.
[51] 周亮, 张芹, 王永龙, 等. 羟肟酸(钠)体系中微细粒赤铁矿的浮选行为[J]. 金属矿山, 2014(4): 87−90.
ZHOU L, ZHANG Q, WANG Y L, et al. Flotation behavior of ultrafine hematite in hydroximic flotation system[J]. Metal Mine, 2014(4): 87−90.
[52] DONG G F, CHEN P, WU J, et al. Efficient flotation separation of picromerite and halite by a novel collector of sodium dodecyl benzene sulfonate[J]. Minerals Engineering, 2023, 202: 108278.
[53] 寇珏, 杨葆华, 徐世红, 等. 十二烷基磺酸钠在赤铁矿表面吸附动力学[J]. 工程科学学报, 2016, 38(10): 1359−1368.
KOU J, YANG B H, XU S H, et al. Adsorption kinetics of sodium dodecyl sulfonate onto hematite[J]. Chinese Journal of Engineering, 2016, 38(10): 1359−1368
[54] 马鸣泽. 磁铁矿对微细粒级赤铁矿浮选的影响及其机理研究[D]. 昆明: 昆明理工大学, 2019.
MA M Z. Study on the effect of magnetite on the flotation of fine−grained hematite and its mechanism[D]. Kunming: Kunming University of Science and Technology, 2019.
[55] MARK M. Froth flotation of iron ores[J]. International Journal of Mining Engineering and Mineral Processing, 2012, 1(2): 6.
[56] 郑贵山, 刘炯天, 陈天修. 羟肟酸钠浮选赤铁矿的研究[J]. 矿冶, 2009, 18(4): 9−12. doi: 10.3969/j.issn.1005-7854.2009.04.003
ZHENG G S, LIU J T, CHEN X T. Study of sodium hydroxamate as collector on hematite flotation[J]. Mining and Metallurgy, 2009, 18(4): 9−12. doi: 10.3969/j.issn.1005-7854.2009.04.003
[57] 李剑铭. 某赤铁矿浮选工艺流程试验研究[J]. 金属矿山, 2010(10): 78−80.
LI J M. Experimental research on flotation process for a hematite ore[J]. Metal Mine, 2010(10): 78−80.
[58] YUAN Y R, ZHANG L Y, GUAN J F, et al. Contribution on fluid inclusion abundance to activation of quartz flotation[J]. Physicochemical Problems of Mineral Processing, 2018(3): 981−991.
[59] MA X D, MAREK P. The effect of lignosulfonates on the floatability of talc[J]. International Journal of Mineral Processing, 2007, 83(1): 19−27.
[60] 任爱军. 赤铁矿反浮选脱硅体系淀粉衍生物抑制性能与机理[D]. 北京: 北京科技大学, 2020.
REN A J. Depressing capability and mechanism of starch derivatives in the reverse flotation desilication system of hematite[D]. Beijing: University of Science and Technology Beijing, 2020.
[61] 伍喜庆, 刘长淼, 黄志华. 一种铁矿物与石英分离的有效浮选药剂[J]. 矿冶工程, 2005(3): 41−43. doi: 10.3969/j.issn.0253-6099.2005.03.012
WU X Q, LIU C M, HUANG Z H. An efficient collector for separation of quartz from iron minerals[J]. Mining and Metallurgical Engineering, 2005(3): 41−43 doi: 10.3969/j.issn.0253-6099.2005.03.012
[62] MA X, MARQUES M, GONTIJO C. Comparative studies of reverse cationic/anionic flotation of Vale iron ore[J]. International Journal of Mineral Processing, 2011, 100(3): 179−183.
[63] FORSMO S P E, FORSMO S E, SAMSKOG P O, et al. Studies on the influence of a flotation collector reagent on iron ore green pellet properties[J]. Powder Technology, 2007, 182(3): 444−452.
[64] LIU W B, LIU W G, WANG B Y, et al. Novel hydroxy polyamine surfactant N−(2−hydroxyethyl)−N−dodecyl−ethanediamine: Its synthesis and flotation performance study to quartz[J]. Minerals Engineering, 2019, 142: 105894. doi: 10.1016/j.mineng.2019.105894
[65] LIU W B, LIU W G, ZHAO Q, et al. Investigating the performance of a novel polyamine derivative for separation of quartz and hematite based on theoretical prediction and experiment[J]. Separation and Purification Technology, 2020, 237: 116370. doi: 10.1016/j.seppur.2019.116370
[66] RODRIGUES S M O, PERES C E A , MARTINS H A, et al. Kaolinite and hematite flotation separation using etheramine and ammonium quaternary salts[J]. Minerals Engineering, 2013, 40: 12−15.
[67] LUO B B, ZHU Y M, SUN C Y, et al. Flotation and adsorption of a new collector α−Bromodecanoic acid on quartz surface[J]. Minerals Engineering, 2015, 77: 86−92. doi: 10.1016/j.mineng.2015.03.003
[68] LIU W B, LIU W G, ZHAO Q, et al. Design and flotation performance of a novel hydroxy polyamine surfactant based on hematite reverse flotation desilication system[J]. Journal of Molecular Liquids, 2020, 301: 112428. doi: 10.1016/j.molliq.2019.112428
[69] LIU W B, TONG K L, DING R, et al. Synthesis of a novel hydroxyl quaternary ammonium collector and its selective flotation separation of quartz from hematite[J]. Minerals Engineering, 2023, 200: 108109.
[70] LIU W B, PENG X Y, LIU W G, et al. Novel polyhydroxy cationic collector N−(2,3−propanediol)−N−dodecylamine: Synthesis and flotation performance to hematite and quartz[J]. International Journal of Mining Science and Technology, 2023, 33(1): 115−122. doi: 10.1016/j.ijmst.2022.09.020
[71] 李小康, 张英, 管侦皓, 等. 白钨矿浮选药剂研究进展[J]. 矿产保护与利用, 2022, 42(2): 14−24.
LI X K, ZHANG Y, GUAN Z H, et al. Research progress of scheelite flotation reagents[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 14−24.
[72] 于慧梅. JZQ−F7捕收剂在赤铁矿反浮选中的浮选特性及机理研究[J]. 贵州大学学报(自然科学版), 2021, 38(4): 60−66.
YU H M. Study on flotation characteristics and mechanism of adsorption of JZQ−F7 collector in hematite reverse flotation system[J]. Journal of Guizhou University(Natural Sciences), 2021, 38(4): 60−66.
[73] 崔瑞, 邓小龙. 某新型脂肪羧酸类捕收剂的浮选性能试验研究[J]. 矿产保护与利用, 2018(6): 46−50.
CUI R, DENG X L. Experimental study on flotation performance of a novelfatty acid collector[J]. Conservation and Utilization of Mineral Resources, 2018(6): 46−50.
[74] 夏夕雯, 梁广泉, 朱一民. 新型常温捕收剂DX−1对石英的浮选性能研究及机理分析[J]. 矿产保护与利用, 2018(4): 69−73.
XIA X W, LIANG G Q, ZHU Y M. Study on the flotation performance of a new type of atmospheric collector DX−1 for quartz[J]. Conservation and Utilization of Mineral Resources, 2018(4): 69−73.
[75] 曹少航, 印万忠, 姚金, 等. 组合捕收剂在赤铁矿常温反浮选中的应用[J]. 金属矿山, 2016(12): 77−81. doi: 10.3969/j.issn.1001-1250.2016.12.017
CAO S H, YIN W Z, YAO J, et al. Applied research of mixed collectors in hematite reverse flotation at normal temperature[J]. Metal Mine, 2016(12): 77−81. doi: 10.3969/j.issn.1001-1250.2016.12.017
[76] 姚富兴, 马艺闻, 张伦旭, 等. 赤铁矿常温/低温浮选捕收剂研究进展[J]. 矿产保护与利用, 2023, 43(6): 130−139.
YAO F X, MA Y W, ZHANG L X, et al. Development of room−temperature and low−temperature collectors for hematite flotation: A comprehensive review[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 130−139.
[77] 何建聪, 罗溪梅, 蒋旺强, 等. 十二胺与十二烷基磺酸钠组合捕收剂对赤铁矿浮选的优化及其泡沫性能调控[J]. 有色金属工程, 2023, 13(5): 75−83. doi: 10.3969/j.issn.2095-1744.2023.05.011
HE J C, LUO X M, JIANG W Q, et al. Optimization of mixed collector of DDA and SDS on flotation and foam during hematite flotation[J]. Nonferrous Metals Engineering, 2023, 13(5): 75−83. doi: 10.3969/j.issn.2095-1744.2023.05.011
[78] LI W C, LIU W B, TONG K L, et al. Synthesis and flotation performance of a novel low−foam viscous cationic collector based on hematite reverse flotation desilication system[J]. Minerals Engineering, 2023, 201: 108190.
[79] 高太, 郭小飞, 袁致涛, 等. 我国赤铁矿选矿技术现状与发展趋势[J]. 金属矿山, 2010(8): 97−101.
GAO T, GUO X F, YUAN Z T, et al. Application and development tendency of beneficiation technology of hematite in China[J]. Metal Mine, 2010(8): 97−101.
[80] 依爽, 赵通林, 涂继娴, 等. 油酸钠组合捕收剂对铁矿石反浮选脱硅的影响[J/OL]. 矿产综合利用, 1−13[2024−03−13]
YI S, ZHAO T L, TU J X, et al. Effect of sodium oleate combined collector on desilication of iron ore by reverse flotation[J/OL]. Multipurpose Utilization of Mineral Resources, 1−13[2024−03−13].
[81] 李明阳, 陈泽, 廉德, 等. 铁矿石浮选调整剂的研究进展[J]. 过程工程学报, 2021, 21(9): 1003−1011. doi: 10.12034/j.issn.1009-606X.220275
LI M Y, CHEN Z, LIAN D, et al. Research progress of regulators in iron mineral flotation[J]. The Chinese Journal of Process Engineering, 2021, 21(9): 1003−1011. doi: 10.12034/j.issn.1009-606X.220275
[82] WANG X Y, LIU W G, DUAN H, et al. Potential application of an eco−friendly amine oxide collector in flotation separation of quartz from hematite[J]. Separation and Purification Technology, 2022, 278.
[83] HAN W J, ZHU Y M, GE W C, et al. Curdlan as a new depressant of hematite for quartz−hematite reverse flotation separation[J]. Minerals Engineering, 2022, 185: 107708.
[84] WANG H Y, WANG L Z Z, YANG S Y, et al. Investigations on the reverse flotation of quartz from hematite using carboxymethyl chitosan as a depressant[J]. Powder Technology, 2021, 393: 109−115. doi: 10.1016/j.powtec.2021.07.073
[85] ZHAO P X, LIU W G, LIU W B, et al. Separation of hematite and quartz in a cationic collector flotation system using Pullulan as a greener depressant[J]. Journal of Molecular Liquids, 2024, 410: 125643−125643. doi: 10.1016/j.molliq.2024.125643
[86] WU H Q, QIU T S, ZHAO G F, et al. Investigations on the reverse cationic flotation separation of quartz from hematite using polyaspartic acid as depressant[J]. Applied Surface Science, 2023, 614: 156143.
[87] DONG Z H, ZHI H, LI W B, et al. Study on inhibition effect and mechanism of sodium humate in hematite reverse flotation[J]. Minerals Engineering, 2022, 189: 107883.
[88] ZHU H L, QIN W Q, CHEN C, et al. Flotation separation of fluorite from calcite using polyaspartate as depressant[J]. Minerals Engineering, 2018, 120: 80−86. doi: 10.1016/j.mineng.2018.02.016
[89] GUO J Y, YUAN C R, ZHAO Z Y, et al. Soil washing by biodegradable GLDA and PASP: Effects on metals removal efficiency, distribution, leachability, bioaccessibility, environmental risk and soil properties[J]. Process Safety and Environmental Protection, 2022, 158: 172−180. doi: 10.1016/j.psep.2021.12.004
[90] WEI Q, DONG L Y, JIAO F, et al. Selective flotation separation of fluorite from calcite by using sesbania gum as depressant[J]. Minerals Engineering, 2021, 174: 107239.
[91] DONG L Y, WEI Q, JIAO F, et al. Utilization of polyepoxysuccinic acid as the green selective depressant for the clean flotation of phosphate ores[J]. Journal of Cleaner Production, 2020, 282: 124532.
[92] CHIMONVO W, FLETCHER B, PENG Y J. Starch chemical modification for selective flotation of copper sulphide minerals from carbonaceous material: A critical review[J]. Minerals Engineering, 2020, 156: 106522.
[93] YANG S Y, LI C, WANG L G. Dissolution of starch and its role in the flotation separation of quartz from hematite[J]. Powder Technology, 2017, 320: 346−357. doi: 10.1016/j.powtec.2017.07.061
[94] ZHANG M, XU Z P, WANG L. Ultrasonic treatment improves the performance of starch as depressant for hematite flotation[J]. Ultrasonics Sonochemistry, 2021, 82: 105877−105877.
[95] ZHANG M, XU Z P, ZHANG Q, et al. Properties and potential application of ozone−oxidized starch for enhanced reverse flotation of fine hematite[J]. Minerals Engineering, 2023, 198: 108084.
[96] WANG Q Q, ZHANG H F, XU Y L, et al. The molecular structure effects of starches and starch phosphates in the reverse flotation of quartz from hematite[J]. Carbohydrate Polymers, 2023, 303: 120484−120484. doi: 10.1016/j.carbpol.2022.120484
[97] FU Y F, YIN W Z, YANG B, et al. Effect of sodium alginate on reverse flotation of hematite and its mechanism[J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(10): 1113−1122. doi: 10.1007/s12613-018-1662-z
[98] 金丹, 马艺闻, 侯英, 等. 赤铁矿反浮选体系中CaCl2与石英吸附作用机理研究[J]. 金属矿山, 2022(6): 94−101.
JIN D, MA Y W, HOU Y, et al. Research on the adsorption mechanism of quartz and CaCl2 in reverse flotation of hematite[J]. Metal Mine, 2022(6): 94−101.
[99] 刘星, 张晋霞, 徐亮, 等. 金属离子对赤铁矿、石英、绿泥石可浮性的影响[J]. 西部探矿工程, 2016, 28(7): 93−95+98.
LIU X, ZHANG J X, XU L, et al. Effect of metal ions on the flotability of hematite, quartz and chlorite[J]. West−China Exploration Engineering, 2016, 28(7): 93−95+98.
-