辉钼矿浮选捕收剂及其作用机理研究综述

张佳颖, 刘建, 赖浩, 郝佳美, 代龙富, 熊浩. 辉钼矿浮选捕收剂及其作用机理研究综述[J]. 矿产保护与利用, 2025, 45(3): 49-58. doi: 10.13779/j.cnki.issn1001-0076.2025.03.005
引用本文: 张佳颖, 刘建, 赖浩, 郝佳美, 代龙富, 熊浩. 辉钼矿浮选捕收剂及其作用机理研究综述[J]. 矿产保护与利用, 2025, 45(3): 49-58. doi: 10.13779/j.cnki.issn1001-0076.2025.03.005
ZHANG Jiaying, LIU Jian, LAI Hao, HAO Jiamei, DAI Longfu, XIONG Hao. A Review on Molybdenite Collectors and their Action Mechanisms[J]. Conservation and Utilization of Mineral Resources, 2025, 45(3): 49-58. doi: 10.13779/j.cnki.issn1001-0076.2025.03.005
Citation: ZHANG Jiaying, LIU Jian, LAI Hao, HAO Jiamei, DAI Longfu, XIONG Hao. A Review on Molybdenite Collectors and their Action Mechanisms[J]. Conservation and Utilization of Mineral Resources, 2025, 45(3): 49-58. doi: 10.13779/j.cnki.issn1001-0076.2025.03.005

辉钼矿浮选捕收剂及其作用机理研究综述

  • 基金项目: 国家自然科学基金项目(52174251)
详细信息
    作者简介: 张佳颖(2000—),女,河北承德人,硕士,主要从事浮选理论与工艺,E-mail:422546848@qq.com
    通讯作者: 刘建(1984—),男,四川广元人,博士,教授,主要从事矿产资源综合利用、浮选表面、界面及量子化学等研究,E-mail:Jianliu@kust.edu.cn
  • 中图分类号: TD923+.13;TD954

A Review on Molybdenite Collectors and their Action Mechanisms

More Information
  • 辉钼矿具有良好的天然可浮性,大多使用烃油类药剂作捕收剂来进行分离和提纯。随着钼矿资源的开采消耗,辉钼矿粒级变细,面棱比变小,亲水性的“棱”增多。由于烃油类捕收剂对“棱”没有捕收效果,传统烃油类药剂对辉钼矿的捕收能力日渐不足。极性捕收剂中的极性基团可以更有效地吸附在“棱”上,因此研发新型高效的辉钼矿极性捕收剂已成为研究重点。对辉钼矿浮选的新型捕收剂进行了系统评述,介绍了辉钼矿的晶体结构及表面特性、非极性烃油类捕收剂的改性与复配、极性捕收剂对辉钼矿的高效回收、组合捕收剂之间的协同作用以及烃油类捕收剂的乳化。辉钼矿捕收剂的作用特点分析表明,辉钼矿磨碎后表面暴露出非极性的“面”和极性“棱”与捕收剂发生吸附作用。此外,捕收剂在矿浆中的分散能力以及与矿物之间的疏水引力是影响辉钼矿回收的关键因素,可通过增加烃油类捕收剂的分散性来提高其捕收效果。分析前人对辉钼矿浮选药剂作用机理的研究成果,可以为钼资源的高效回收提供参考。

  • 加载中
  • 图 1  辉钼矿的晶体结构

    Figure 1. 

    图 2  辉钼矿不同断裂面的吸附基团[15]

    Figure 2. 

    表 1  非极性捕收剂的特点

    Table 1.  Characteristics of non−polar collectors

    药剂 特点
    YC[25] 对各种矿石的适应性强、捕收性好
    JY18[26] 与YC药剂相比,分子量增大,碳链
    增长,弥散性不变
    DY16−1[27] 捕收能力增强,但成本高
    F药剂[28] 捕收效果理想,购买途径广,
    价格低廉
    N−132[29] 药剂用量少,对辉钼矿吸附牢固,
    具有一定起泡性
    GR−173[30] 针对性较好,用量少
    BK4[31] 对矿物适应性好,药剂选择性强,
    捕收能力强
    TM−8[32] 选别性能好,具有起泡性能
    复合烃油[33] 同时吸附在“面”和“棱”上,
    提高回收率
    BN油、BY油[34] 回收效果好
    KMC−1[35] 对粗粒级辉钼矿回收高效
    DH油[36] 捕收效果好
    下载: 导出CSV

    表 2  极性捕收剂的成分及特点

    Table 2.  Composition and characteristics of polar collectors

    药剂 成分 特点
    PM[38] 含少量某种极性较强的分子和极性捕收剂 拓宽了普通烃油对辉钼矿浮选的pH值范围
    XM31[40] 非极性烃油和极性药剂 分散能力强
    TBC114[41-42] MAC−18捕收剂、增效捕收剂羧酸酯和
    烃油类捕收剂
    选矿指标与煤油相当,成本比煤油低,
    但具有起泡性
    CSU31[43] 石油馏出物和羧酸酯 捕收性好
    CSU−23[44] 石油馏出物和一种高效硫化矿捕收剂 适应性好,选择性强,用量少节约成本
    LKD−3[45] 重芳烃和碳十醇 选择性和捕收能力强
    CTD[46] 煤焦油和十二烷 提高细粒级辉钼矿回收率
    KCTC[47] 煤油和煤焦油 提高颗粒气泡附着效率
    下载: 导出CSV
  • [1]

    ZHOU Y H, HU P, CHANG T, et al. Research progress of strengthening and toughening modes and mechanisms of molybdenum alloys[J]. Journal of Functional Materials, 2018, 49(1): 1026−1032.

    [2]

    FLEISCHAUER, BAUER. Chemical and structural effects on the lubrication properties of sputtered MoS2 films[J]. Tribology Transactions, 1988, 31(2): 239−250. doi: 10.1080/10402008808981819

    [3]

    ZHANG Y C, ZHANG R J, GUO Y X, et al. A review on MoS2 structure, preparation, energy storage applications and challenges[J]. Journal of Alloys and Compounds, 2024, 998: 174916. doi: 10.1016/j.jallcom.2024.174916

    [4]

    朱欣然. 国内外钼资源供需形势分析[J]. 矿产保护与利用, 2020, 40(1): 172−178.

    ZHU X R. Analysis of supply and demand situation of molybdenum resources at home and abroad[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1): 172−178.

    [5]

    邹艳. 钼矿选矿技术进展[J]. 冶金与材料, 2021, 41(2): 129−130. doi: 10.3969/j.issn.1674-5183.2021.02.065

    ZOU Y. Progress in molybdenum ore beneficiation technology[J]. Metallurgy and Materials, 2021, 41(2): 129−130. doi: 10.3969/j.issn.1674-5183.2021.02.065

    [6]

    CHEN Y J, ZHANG C, WANG P, et al. The Mo deposits of Northeast China: A powerful indicator of tectonic settings and associated evolutionary trends[J]. Ore Geology Reviews, 2017, 81: 602−640. doi: 10.1016/j.oregeorev.2016.04.017

    [7]

    WANG H, CHEN L, FU J G, et al. Interface thermodynamics of molybdenite floatation system[J]. Journal of Central South University(Science and Technology), 2007(5): 893−899.

    [8]

    HE T S, WAN H, SONG N P, et, al. The influence of composition of nonpolar oil on flotation of molybdenite[J]. Minerals Engineering, 2011, 24(13): 1513−1516. doi: 10.1016/j.mineng.2011.07.003

    [9]

    LIN Q Q, GU G H, WANG H, et al. Flotation mechanisms of molybdenite fines by neutral oils[J]. International Journal of Minerals Metallurgy and Materials, 2018, 25(1): 1−10. doi: 10.1007/s12613-018-1540-8

    [10]

    LI S L, MA X M, WANG J C, et al. Effect of polyethylene oxide on flotation of molybdenite fines[J]. Minerals Engineering, 2020, 146: 106146. doi: 10.1016/j.mineng.2019.106146

    [11]

    XIONG K J, KUAN L X. Thoughts on the development of molybdenum beneficiation technology[C]//Conference Series−Earth and Environmental Science, 2021: 647.

    [12]

    韩超. 内蒙古东乌旗迪彦钦阿木钼矿床地质特征及成因[D]. 阜新: 辽宁工程技术大学, 2021.

    HAN C. Geological characteristics and genesis of the East Wuqi Diyanqin Amu Molybdenum deposit in Inner Mongolia[D]. Fuxin: Liaoning Technical University, 2021.

    [13]

    RADISAVLJEVIC B, WHITWICK M B, KIS A. Small−signal amplifier based on single−layer MoS2[J]. Applied Physics Letters, 2012, 101(5): 043103.

    [14]

    郑锡联. 新型抑制剂在铜钼分离中的试验研究[D]. 南昌: 江西理工大学, 2012.

    ZHENG X L. Experimental study of novel inhibitors in the separation of copper and molybdenum[D]. Nanchang: Jiangxi University of Science and Technology, 2012.

    [15]

    魏桢伦, 李育彪. 辉钼矿晶面各向异性及其对浮选的影响机制[J]. 矿产保护与利用, 2018(3): 31−36.

    WEI Z L, LI Y B. Anisotropy of molybdenite surface and its effect on flotation mechanism[J]. Conservation and Utilization of Mineral Resources, 2018(3): 31−36.

    [16]

    LU Z Z, LIU Q X, XU Z H, et al. Probing anisotropic surface properties of molybdenite by direct force measurements[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2015, 31(42): 11409−11418. doi: 10.1021/acs.langmuir.5b02678

    [17]

    柯家骏. 辉钼矿晶面特性工艺矿物学的研究[J]. 化工冶金, 1981(4): 35−41.

    KE J J. Research on process mineralogy of molybdenite crystal plane characteristics[J]. Chemical Metallurgy, 1981(4): 35−41.

    [18]

    WEI Z, LI Y, HUANG L. New insight into the anisotropic property and wettability of molybdenite: A DFT study[J]. Minerals Engineering, 2021, 170: 107058. doi: 10.1016/j.mineng.2021.107058

    [19]

    CASTRO S, LOPEZ−VALDIVIESO A, LASKOWSKI JS. Review of the flotation of molybdenite. Part I: Surface properties and floatability[J]. International Journal of Mineral Processing, 2016, 148: 48−58. doi: 10.1016/j.minpro.2016.01.003

    [20]

    吕建业, 沈耀平, 张洪恩. 辉钼矿表面特性及其可浮性的研究[J]. 有色金属(选矿部分), 1992(4): 4−8+41.

    LYU J Y, SHEN Y P, ZHANG H E. Study of the surface characteristics of molybdenite and its floatability[J]. Nonferrous Metals(Mineral Processing Part), 1992(4): 4−8+41.

    [21]

    黄霞光, 卢可可. 微细粒辉钼矿浮选行为研究[J]. 矿产保护与利用, 2014(2): 18−21.

    HUANG X G, LU K K. Research on the flotation behavior of micro−fine particle molybdenite[J]. Conservation and Utilization of Mineral Resources, 2014(2): 18−21.

    [22]

    陈立. 辉钼矿浮选体系中的界面相互作用研究[D]. 长沙: 中南大学, 2007.

    CHEN L. Interfacial interaction studies in molybdenite flotation systems[D]. Changsha: Central South University, 2007.

    [23]

    刘曙光, 彭伟军, 王伟, 等. 氧化预处理技术在铜钼硫化矿浮选分离中的研究进展[J]. 矿产保护与利用, 2022, 42(1): 34−44.

    LIU S G, PENG W J, WANG W, et al. Research progress of oxidation pretreatment technology in the flotation separation of copper−molybdenum sulphide minerals[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 34−44.

    [24]

    张宝元, 钟宏. 辉钼矿的浮选及其捕收剂的研究进展[J]. 矿产保护与利用, 2010(3): 51−54. doi: 10.3969/j.issn.1001-0076.2010.03.014

    ZHANG B Y, ZHONG H. Review on research progress of molybdenite flotation and its collectors[J]. Conservation and Utilization of Mineral Resources, 2010(3): 51−54. doi: 10.3969/j.issn.1001-0076.2010.03.014

    [25]

    张美鸽, 刘迎春, 李九洲, 等. YC捕收剂及其各馏分对辉钼矿的试验研究[J]. 金属矿山, 2006(11): 45−46+61. doi: 10.3321/j.issn:1001-1250.2006.11.012

    ZHANG M G, LIU Y C, LI J Z, et al. Experiment research on effect of YC collector and various distillation fraction fractions on molybdenite[J]. Metal Mine, 2006(11): 45−46+61. doi: 10.3321/j.issn:1001-1250.2006.11.012

    [26]

    钟在定, 陈丽娟, 刘雁鹰, 等. 新型选钼捕收剂JY18选钼试验研究[J]. 中国钼业, 2021, 45(3): 27−30+40.

    ZHONG Z D, CHEN L J, LIU Y Y, et al. Experimental study on molybdenum flotation by JY18 collector[J]. China Molybdenum Industry, 2021, 45(3): 27−31+40.

    [27]

    高雪婷, 秦华江, 任强, 等. 新型选钼捕收剂DY16−1工业应用试验研究[J]. 中国钼业, 2021, 45(5): 24−29.

    GAO X T, QIN H J, REN Q, et al. Industrial application experimental study of new molybdenum collector DY16−1[J]. China Molybdenum Industry, 2021, 45(5): 24−29.

    [28]

    徐秋生. F药剂代替煤油选钼实践[J]. 有色金属(选矿部分), 2006(6): 46−47+45.

    XU Q S. F agent instead of kerosene molybdenum selection practice[J]. Nonferrous Metals(Mineral Processing Part), 2006(6): 46−47+45.

    [29]

    朱建光, 杜新路, 王升鹤. N−132选钼捕收剂浮辉钼矿试验[J]. 有色矿山, 2000(4): 30−32.

    ZHU J G, DU X L, WANG S H. Test of using N−132 collector to concentrate molybdenite[J]. Non−Ferrous Mines, 2000(4): 30−32.

    [30]

    李莹, 宋翔宇, 高志, 等. 新型捕收剂GR−713选别某辉钼矿应用研究[J]. 矿产保护与利用, 2012(3): 27−29. doi: 10.3969/j.issn.1001-0076.2012.03.007

    LI Y, SONG X Y, GAO Z, et al. Application research on new collector GR−713 in a molybdenite ore beneficiation[J]. Conservation and Utilization of Mineral Resources, 2012(3): 27−29. doi: 10.3969/j.issn.1001-0076.2012.03.007

    [31]

    王选毅, 陈晓青, 余江鸿, 等. 选钼新药剂BK4的选矿试验研究[J]. 甘肃冶金, 2006(4): 12−13+31. doi: 10.3969/j.issn.1672-4461.2006.04.006

    WANG X Y, CHEN X Q, YU J H, et al. Beneficiation test study of BK4, a new molybdenum agent[J]. Gansu Metallurgy, 2006(4): 12−13+31. doi: 10.3969/j.issn.1672-4461.2006.04.006

    [32]

    缑明亮, 武俊杰, 崔长征, 等. 辉钼矿选矿药剂及选矿工艺研究[J]. 有色金属(选矿部分), 2013(3): 74−77.

    HOU M L, WU J J, CUI C Z, et al. Research on mineral processing reagent and process of molybdenite[J]. Nonferrous Metals(Mineral Processing Part), 2013(3): 74−77.

    [33]

    LIU R Q, LI J, SONG X, et al. Flotation enhancing mechanism and application of compound hydrocarbon oil on molybdenites with different particle sizes[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(3): 912−921.

    [34]

    刘浩. 辉钼矿浮选试验及其新型捕收剂浮选机理研究[D]. 长沙: 中南大学, 2013.

    LIU H. Molybdenite flotation test and flotation mechanism of new collector[D]. Changsha: Central South University, 2013.

    [35]

    张琳, 张晶, 简胜, 等. 新型捕收剂KMC−1浮选分离某铜钼矿试验研究[J]. 矿产保护与利用, 2023, 43(1): 120−127.

    ZHANG L, ZHANG J, JIAN S, et al. Experimental study on flotation separation of a copper−molybdenum ore with a novel collector KMC−1[J]. Conservation and Utilization of Mineral Resources, 2023, 43(1): 120−127.

    [36]

    万宏民, 赵笑益, 秦靖, 等. DH油在辉钼矿浮选中的应用[C]//有色金属工业科技创新−中国有色金属学会第七届学术年会论文集, 2008: 4.

    WAN H M, ZHAO X Y, QIN J, et al. Application of DH oil in molybdenite flotation[C]//Scientific and Technological Innovation of Nonferrous Metals Industry−Proceedings of the 7th Annual Conference of China Nonferrous Metals Society, 2008: 4.

    [37]

    代淑娟, 刘烱天, 杨树勇, 等. 捕收剂DT−1在钼矿浮选中的应用研究[J]. 中国矿业, 2012, 21(5): 81−83+87. doi: 10.3969/j.issn.1004-4051.2012.05.020

    DAI S J, LIU J T, YANG S Y, et al. Study on experiment of new collector DT−1 flotation molybdenum ore[J]. China Mining Magazine, 2012, 21(5): 81−83+87. doi: 10.3969/j.issn.1004-4051.2012.05.020

    [38]

    谢小燕. 新型辉钼矿捕收剂的浮选作用及机理研究[D]. 长沙: 中南大学, 2014.

    XIE X Y. Study on the flotation effect and mechanism of a new type of molybdenite collector[D]. Changsha: Central South University, 2014.

    [39]

    张艳娇, 赵平, 郭珍旭, 等. 极性捕收剂在难选辉钼矿浮选中的应用[J]. 矿产保护与利用, 2014(6): 25−27.

    ZHANG Y J, ZHAO P, GUO Z X, et al. Application of polar collectors in rrefractory molybdenite floatation[J]. Conservation and Utilization of Mineral Resources, 2014(6): 25−27.

    [40]

    LIN Q Q, WU Q M, DAI Z F, et al. Mechanism for hydrocarbon oil collectors in flotation of fine molybdenite ore[J]. Mining and Metallurgical Engineering, 2021, 41(3): 37−41+45.

    [41]

    任骊东. 选钼捕收剂的应用研究与实践[J]. 中国钼业, 2006(3): 18−20. doi: 10.3969/j.issn.1006-2602.2006.03.005

    REN L D. Study on application and practice of molybdenite collector[J]. China Molybdenum Industry, 2006(3): 18−20. doi: 10.3969/j.issn.1006-2602.2006.03.005

    [42]

    张美鸽, 张学武, 俞国庆, 等. 新型捕收剂TBC选钼试验研究[J]. 有色金属(选矿部分), 2005(2): 42−44.

    ZHANG M G, ZHANG X W, YU G Q, et al. Study on experiment of new collector TBC114 flotating molybdenum ore[J]. Nonferrous Metals(Mineral Processing Part), 2005(2): 42−44.

    [43]

    于润存. 新型辉钼矿浮选捕收剂的应用研究[D]. 长沙: 中南大学, 2009.

    YU R C. Applied research on a new molybdenite flotation collector [D]. Changsha: Central South University, 2009.

    [44]

    刘旭, 何章兴, 王晖, 等. CSU−23捕收剂浮选辉钼矿试验研究[J]. 中国钼业, 2009, 33(5): 11−13. doi: 10.3969/j.issn.1006-2602.2009.05.003

    LIU X, HE Z X, WANG H, et al. Study on the experiment of CSU−23 collector flotating molybdenites[J]. China Molybdenum Industry, 2009, 33(5): 11−13. doi: 10.3969/j.issn.1006-2602.2009.05.003

    [45]

    李颖. LKD−3复合捕收剂对内蒙古某钼矿的应用研究[D]. 鞍山: 辽宁科技大学, 2023.

    LI Y. Research on the application of LKD−3 composite collector to a molybdenum mine in Inner Mongolia[D]. Anshan: Liaoning University of Science and Technology, 2023.

    [46]

    LI L N, LI S L, GAO L H, et al. Influence mechanism of a compound collector from coal tar and dodecane in the flotation of fine molybdenite particles[J]. Minerals Engineering, 2023, 202: 108242.

    [47]

    CHAO Y D, LI S L, GAO L H, et al. Enhanced flotation recovery of fine molybdenite particles using a coal tar−based collector[J]. Minerals, 2021, 11(12): 1439. doi: 10.3390/min11121439

    [48]

    WAN H, YANG W, HE T S, et al. The influence of Ca2+ and pH on the interaction between PAHs and molybdenite edges[J]. Minerals, 2017, 7(6): 104. doi: 10.3390/min7060104

    [49]

    徐龙华, 田佳, 巫侯琴, 等. 组合捕收剂在矿物表面的协同效应及其浮选应用综述[J]. 矿产保护与利用, 2017(2): 107−112.

    XU L H, TIAN J, WU H Q, et al. A review on the synergetic effect of the mixed collectors on mineral surface and its application in flotation[J]. Conservation and Utilization of Mineral Resources, 2017(2): 107−112.

    [50]

    MA Z L, PAN W F, LI S L, et al. Study on the flotation mechanism of molybdenite fines by synergistic enhancement of ndodecanethiol and kerosene[J]. Journal of China University of Mining & Technology, 2023, 52(6): 1231−1240.

    [51]

    汤雁斌. 国内外钼矿选矿技术进步与创新[J]. 铜业工程, 2010(1): 29−33. doi: 10.3969/j.issn.1009-3842.2010.01.007

    TANG Y B. Technical progress and innovation for mineral separation in molybdenum mines in the world[J]. Copper Engineering, 2010(1): 29−33. doi: 10.3969/j.issn.1009-3842.2010.01.007

    [52]

    HE T S, LI H, JIN J P, et al. Improving fine molybdenite flotation using a combination of aliphatic hydrocarbon oil and polycyclic aromatic hydrocarbon[J]. Results in Physics, 2019, 12: 1050−1055. doi: 10.1016/j.rinp.2018.12.010

    [53]

    谢小燕, 邱显扬, 罗传胜, 等. 辉钼矿可浮选性及其捕收剂的研究进展[J]. 中国钼业, 2013, 37(5): 29−32. doi: 10.3969/j.issn.1006-2602.2013.05.006

    XIE X Y, QIU X Y, LUO C S, et al. Research progress on floatability of molybdenite and its collectors[J]. China Molybdenum Industry, 2013, 37(5): 29−32. doi: 10.3969/j.issn.1006-2602.2013.05.006

    [54]

    宛鹤, 何廷树, 杨剑波, 等. 复合烃油捕收剂改善高钙回水选钼效果的试验研究[J]. 有色金属工程, 2018, 8(2): 91−95.

    WAN H, HE T S, YANG J B, et al. Study on the improvement of molybdenite flotation effect in high calcium recycled water by composite hydrocarbon oil collector[J]. Nonferrous Metals Engineering, 2018, 8(2): 91−95.

    [55]

    赵明林. 温度对辉钼矿浮选的影响及其改善的途径[J]. 国外金属矿选矿, 1991(Z1): 86−89.

    ZHAO M L. The influence of temperature on molybdenite flotation and the way to improve it[J]. Metallic Ore Dressing Abroad, 1991(Z1): 86−89.

    [56]

    孙淑秀, 陈少平, 柯炳太, 等. 基于接触角的烃油无水乳液的乳化剂选择[J]. 福建师范大学学报(自然科学版), 2016, 32(3): 62−66.

    SUN S X, CHEN S P, KE B T, et al. Selection of anhydrous emulsifiers of hydrocarbon oils based on their contact angles[J]. Journal of Fujian Normal University (Natural Science Edition), 2016, 32(3): 62−66.

    [57]

    李琳, 吕宪俊. 辉钼矿捕收剂的研究与应用[J]. 中国矿业, 2011, 20(3): 61−64. doi: 10.3969/j.issn.1004-4051.2011.03.017

    LI L, LYU X J. Research and application of molybdenite collector[J]. China Mining Magazine, 2011, 20(3): 61−64. doi: 10.3969/j.issn.1004-4051.2011.03.017

    [58]

    安茂燕, 廖寅飞, 解恒参, 等. 乳化捕收剂强化煤泥浮选研究进展[J]. 矿产保护与利用, 2024, 44(1): 105−114.

    AN M Y, LIAO Y F, XIE H S, et, al. Research progress of the emulsified collector in enhancing coal slime flotation[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 105−114.

    [59]

    王森, 王志远, 宛鹤, 等. 水包油型乳化柴油制备及其对辉钼矿浮选的强化[J]. 金属矿山, 2023(1): 204−209.

    WANG S, WANG Z Y, WAN H, et al. Preparation of oil−in−water emulsified diesel oil and its enhancement in molybdenite flotation[J]. Metal Mine, 2023(1): 204−209.

    [60]

    DU R K, TUO B, WANG J L, et al. Synergistic effect of SPS compound surfactant and diesel oil on low−rank coal slime flotation[J]. Internation Journal of Coal Preparation and Utilization, 2023, 43(12): 2091−2105. doi: 10.1080/19392699.2022.2156993

    [61]

    GE W C, LIU J, REN H, et al. Enhanced mixed flotation of copper−molybdenum ore using dodecyl dimethyl betaine−emulsified kerosene as environmentally friendly collector[J]. Journal of cleaner production, 2024, 447: 141576. doi: 10.1016/j.jclepro.2024.141576

  • 加载中

(2)

(2)

计量
  • 文章访问数:  51
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2024-08-14
刊出日期:  2025-06-15

目录