Removal of Rich Fluid Inclusions in Vein Quartz by Combined Collector Flotation and Its Mechanism Analysis
-
摘要:
高纯石英砂中的流体包裹体限制了其应用领域。以非洲某地区脉石英为研究对象,开展了浮选富流体包裹体石英颗粒研究。通过DECA(双极端对比)检测法进行流体包裹体定量分析,发现不同粒级石英砂通透石英颗粒占比不同,故仅针对−0.20+0.106 mm粒级石英砂进行浮选实验。结果表明:在pH为9.5,BQY+HQY组合捕收剂用量为80+160 g/t时,精矿石英中通透颗粒占比为65.46%,较原矿提升20.46百分点,扫选精矿中通透颗粒占比较原矿提升10.08百分点,并且精矿中Al、Fe、K、Ca元素含量与原矿相比,分别降低了9.74%、13.68%,18.63%以及18.96%。由红外光谱与能谱分析可知,BQY与HQY药剂之间的协同作用使得通透石英更易浮出。此外,浮选精矿制备的玻璃体气泡含量较原矿显著减少,证明浮选对富流体包裹体石英颗粒实现有效去除。
Abstract:The fluid inclusions in high purity quartz sand limit its application. Quartz veins from a certain region in Africa as the research object, and flotation experiments were conducted on quartz particles with rich fluid inclusions. Quantitative analysis of fluid inclusions was conducted using DECA (Double Extreme Case Analysis) method, and it was found that the proportion of transparent quartz particles varied among different particle sizes of quartz sand. Flotation experiments were conducted on quartz sand with particle sizes of −0.20+0.106 mm. The results showed that when the pH was 9.5, the combined collector of BQY+HQY were 80+160 g∙t−1, the proportion of transparent particles in the quartz concentrate was 65.46%, with an increase of 20.46 percentage points compared to the original ore. The proportion of transparent particles in the scanned concentrate increased by 10.08 percentage points compared to the original ore. Moreover, the content of Al、Fe、K、Ca elements in the concentrate decreased by 9.74%, 13.68%, 18.63%, and 18.96% compared to the original ore. According to infrared spectrum and energy spectrum analysis, the synergistic effect between BQY and HQY agents makes it easier for transparent quartz to float out. In addition, the bubble content in the quartz glass prepared before and after flotation had changed. It also further proves that flotation had the significant removal effect on rich fluid inclusion quartz particles.
-
Key words:
- vein quartz /
- flotation /
- fluid inclusions /
- combination collector /
- quartz vitreous body
-
-
表 1 原矿化学成分分析
Table 1. Chemical composition analysis of raw ore
/(μg·g−1) 元素 Al Ca Cu Fe K Li Mg 含量 154.12 32.22 0.43 44.34 61.40 1.53 26.2 元素 Ni Mn Na B Ti 合计 SiO2 含量 0.01 0.82 13.70 0.33 7.40 342.57 99.96* 注:*代表百分含量。 表 2 不同药剂用量下的精矿产率与通透颗粒占比
Table 2. Concentrates yield and percentage of transparent particles under different
总用量/(g∙t−1) 精矿产率/% 通透颗粒占比/% BQY+HQY =80+160 10.50 65.21 BQY+HQY =160+160 28.20 50.38 BQY+HQY =240+160 34.30 48.30 BQY+HQY =160+80 20.57 57.65 表 3 不同浮选产物表面原子占比
Table 3. Surface atomic percentage of different flotation products
/% 样品 Si O Al Ca Na Cl K S 总量 谱图1(浮选精矿) 27.37 61.99 0.55 2.32 5.73 − 0.28 − 100 谱图2(浮选精矿) 13.22 58.67 0.38 1.59 11.73 11.02 1.75 1.65 100 谱图3(浮选槽内) 28.47 71.21 − 0.32 − − − − 100 谱图4(浮选槽内) 22.57 73.96 − 3.47 − − − − 100 -
[1] 张海啟, 张亮, 刘磊, 等. 全球高纯石英资源开发利用现状及供需分析[J]. 矿产保护与利用, 2022(5): 49−54.
ZHANG H Q, ZHANG L, LIU L, et al. Development, utilization, supply and demand of global high purity quartz resources: a systematic review and meta−analysis[J]. Conservation and Utilization of Mineral Resources, 2022(5): 49−54.
[2] 施娅颖, 王小强, 张会, 等. 高纯石英的杂质类型及深度提纯技术研究进展[J]. 矿产保护与利用, 2023(6): 76−78.
SHI Y Y, WANG X Q, ZHANG H, et al. Research progress on impurity characteristics and deep chemical purification technology in high−purity quartz[J]. Conservation and Utilization of Mineral Resources, 2023(6): 76−78.
[3] 贺贤举, 管俊芳, 张冲, 等. TFT−LCD玻璃基板用脉石英工艺矿物学研究[J]. 矿产综合利用, 2019(2): 79−82. doi: 10.3969/j.issn.1000-6532.2019.02.016
HE X J, GUAN J F, ZHANG C, et al. Study on mineralogy of vein quartz for TFT−LCD glass substrate[J]. Multipurpose Utilization of Mineral Resources, 2019(2): 79−82. doi: 10.3969/j.issn.1000-6532.2019.02.016
[4] 张立, 胡修权, 张晋, 等. 鄂西地区某脉石英中流体包裹体特征分析[J]. 矿产综合利用, 2023(3): 205−210. doi: 10.3969/j.issn.1000-6532.2023.03.034
ZHANG L, HU X Q, ZHANG J, et al. Characteristic analysis on fluid inclusions of vein quartz in western Hubei Province[J]. Multipurpose Utilization of Mineral Resources, 2023(3): 205−210. doi: 10.3969/j.issn.1000-6532.2023.03.034
[5] 林敏, 徐顺秋, 刘子源, 等. 高纯石英(SiO2)评述(三): 流体包裹体的分析、活化与分离[J]. 矿产综合利用, 2022(6): 26−29. doi: 10.3969/j.issn.1000-6532.2022.06.005
LIN M, XU S Q, LIU Z Y, et al. Review for high−purity quartz (SiO2) (part Ⅲ): Analysis, activation and separation of fluid inclusions[J]. Multipurpose Utilization of Mineral Resources, 2022(6): 26−29. doi: 10.3969/j.issn.1000-6532.2022.06.005
[6] WINICK J A, MCINTOSH W C, DUNBAR N W. Melt−inclusion−hosted excess Ar−40 in quartz crystals of the Bishop and Bandelier magma systems[J]. Geology, 2001, 29(3): 275−278. doi: 10.1130/0091-7613(2001)029<0275:MIHEAI>2.0.CO;2
[7] 武志超, 张海啟, 谭秀民, 等. 高纯石英应用及化学提纯技术研究进展[J]. 化工矿物与加工, 2023, 52(9): 72−80.
WU Z C, ZHANG H Q, TAN X M, et al. Research progress on the application of high−purity quartz and its chemical refinement technology[J]. Industrial Minerals & Processing, 2023, 52(9): 72−80.
[8] YIN R, JING L, HOU Q, et al. Study on optimization quartz mine for removal gas−liquid inclusions in quartz sand under microwave and acid corrosion[J]. Advanced Materials Research, 2013, 800: 3−7. doi: 10.4028/www.scientific.net/AMR.800.3
[9] 马超, 冯安生, 刘长淼, 等. 高纯石英原料矿物学特征与加工技术进展[J]. 矿产保护与利用, 2019, 39(6): 48−57.
MA C, FENG A S, LIU C M, et al. Mineralogical characteristics and progress in processing technology of raw materials of high purity quartz[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 48−57.
[10] 侯清麟, 王迎霞, 侯熠徽. 剔除硅石矿中气液包裹体方法的研究[J]. 包装学报, 2019, 11(6): 38−42. doi: 10.3969/j.issn.1674-7100.2019.06.006
HOU Q L, WANG Y X, HOU Y H, et al. Study on gas−liquid inclusion methods for removing silica ores[J]. Packaging Journal, 2019, 11(6): 38−42. doi: 10.3969/j.issn.1674-7100.2019.06.006
[11] 赵动. 去除微小流体包裹体制备高纯石英砂的研究[D]. 广州: 华南理工大学, 2014.
ZHAO D. Research on removing tiny fluid inclusions for preparation of high purity quartz sand[D]. Guangzhou: South China University of Technology, 2014.
[12] BUTTRESS A, RODRIGUEZ J, URE A, et al. Production of high purity silica by microfluidic−inclusion fracture using microwave pre−treatment[J]. Minerals Engineering, 2019, 131: 407−419. doi: 10.1016/j.mineng.2018.11.025
[13] 马亚梦, 张海啟, 谭秀民, 等. 某矿区高纯石英化学深度提纯技术研究[J]. 矿产保护与利用, 2022, 42(5): 22−27.
MA Y M, ZHANG H Q, TAN X M, et al. Research on chemical deep purification technology of high−purity quartz in a mining area[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 22−27.
[14] 刘广学, 马亚梦, 刘磊, 等. 新疆阿尔泰地区某花岗伟晶岩型石英深度除杂技术研究[J]. 矿产保护与利用, 2022, 42(5): 8−14.
LIU G X, MA Y M, LIU L, et al. Study on deep impurity removal technology of a granite pegmatite−type high−purity quartz in Altay region of Xinjiang[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 8−14.
[15] 刘孟浩, 管俊芳, 任子杰, 等. 两地石英岩矿的选矿提纯差异研究[J]. 矿产保护与利用, 2023, 43(2): 99−105.
LIU M H, GUAN J F, REN Z J, et al. Beneficiation difference of quartzite mines in two places[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 99−105.
[16] 刘泰荣. 酸浸辅助微波场去除石英砂中气液包裹体的硏究[D]. 株洲: 湖南工业大学, 2015.
LIU T R. Research on Removal of fluid inclusions from quartz sand through acid leaching−aided microwave field[D]. Zhuzhou: Hunan University of Technology, 2015.
[17] 郑仁基. 不同缺陷类型萤石浮选行为与机理研究[D]. 武汉: 武汉理工大学, 2019.
ZHENG R J. Study on the flotation behavior and mechanism of the fluorites with different defect type[D]. Wuhan: Wuhan University of Technology, 2019.
[18] 伍红强, 邱廷省. 不同粒度赤铁矿和石英的浮选行为研究[J]. 金属矿山, 2021(4): 101−105.
WU H Q, QIU T S. Study on flotation behavior of hematite and quartz with different particle sizes[J]. Metal Mine, 2021(4): 101−105.
[19] SHEN L F, SUN N, XU R, et al. Adsorption mechanisms of activated surface of quartz and feldspar with mixed NaOL/DDA[J]. Separation and Purification Technology, 2023, 314: 123501. doi: 10.1016/j.seppur.2023.123501
[20] 贾蕗繁, 罗溪梅, 王云帆, 等. 阴阳离子组合捕收剂对微细粒赤铁矿与石英浮选分离的研究[J]. 矿产保护与利用, 2024, 44(1): 33−39.
JIA L F, LUO X M, WANG Y F, et al. Research on the flotation separation of fine−grained hematite and quartz by combined cation−anion collectors[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 33−39.
[21] 唐劭禹, 张凌燕, 张冲, 等. Fe3+对十二烷基磺酸钠捕收石英的活化作用研究[J]. 非金属矿, 2017, 40(5): 79−81. doi: 10.3969/j.issn.1000-8098.2017.05.024
TANG S Y, ZHANG L Y, ZHANG C, et al. Study on activation of sodium dodecyl sulfonate collecting quartz by Fe3+[J]. Non−Metallic Mines, 2017, 40(5): 79−81. doi: 10.3969/j.issn.1000-8098.2017.05.024
-