组合捕收剂浮选去除脉石英中富流体包裹体颗粒及其机理分析

何宇豪, 宋昱晗, 樊婷, 邓祺, 管俊芳, 任子杰. 组合捕收剂浮选去除脉石英中富流体包裹体颗粒及其机理分析[J]. 矿产保护与利用, 2025, 45(3): 97-103. doi: 10.13779/j.cnki.issn1001-0076.2025.03.008
引用本文: 何宇豪, 宋昱晗, 樊婷, 邓祺, 管俊芳, 任子杰. 组合捕收剂浮选去除脉石英中富流体包裹体颗粒及其机理分析[J]. 矿产保护与利用, 2025, 45(3): 97-103. doi: 10.13779/j.cnki.issn1001-0076.2025.03.008
HE Yuhao, SONG Yuhan, FAN Ting, DENG Qi, GUAN Junfang, REN Zijie. Removal of Rich Fluid Inclusions in Vein Quartz by Combined Collector Flotation and Its Mechanism Analysis[J]. Conservation and Utilization of Mineral Resources, 2025, 45(3): 97-103. doi: 10.13779/j.cnki.issn1001-0076.2025.03.008
Citation: HE Yuhao, SONG Yuhan, FAN Ting, DENG Qi, GUAN Junfang, REN Zijie. Removal of Rich Fluid Inclusions in Vein Quartz by Combined Collector Flotation and Its Mechanism Analysis[J]. Conservation and Utilization of Mineral Resources, 2025, 45(3): 97-103. doi: 10.13779/j.cnki.issn1001-0076.2025.03.008

组合捕收剂浮选去除脉石英中富流体包裹体颗粒及其机理分析

详细信息
    作者简介: 何宇豪(1998—),男,河南安阳人,博士研究生,主要从事高纯石英、石墨等非金属矿提纯等方面的研究工作,E-mail:1807099935@qq.com
    通讯作者: 任子杰(1987—),男,山西孝义人,博士,教授,博士生导师,主要从事非金属矿提纯与深加工、矿物材料等方面的研究工作,E-mail:renzijie@whut.edu.com
  • 中图分类号: TD923;TD973+.3

Removal of Rich Fluid Inclusions in Vein Quartz by Combined Collector Flotation and Its Mechanism Analysis

More Information
  • 高纯石英砂中的流体包裹体限制了其应用领域。以非洲某地区脉石英为研究对象,开展了浮选富流体包裹体石英颗粒研究。通过DECA(双极端对比)检测法进行流体包裹体定量分析,发现不同粒级石英砂通透石英颗粒占比不同,故仅针对−0.20+0.106 mm粒级石英砂进行浮选实验。结果表明:在pH为9.5,BQY+HQY组合捕收剂用量为80+160 g/t时,精矿石英中通透颗粒占比为65.46%,较原矿提升20.46百分点,扫选精矿中通透颗粒占比较原矿提升10.08百分点,并且精矿中Al、Fe、K、Ca元素含量与原矿相比,分别降低了9.74%、13.68%,18.63%以及18.96%。由红外光谱与能谱分析可知,BQY与HQY药剂之间的协同作用使得通透石英更易浮出。此外,浮选精矿制备的玻璃体气泡含量较原矿显著减少,证明浮选对富流体包裹体石英颗粒实现有效去除。

  • 加载中
  • 图 1  原矿XRD分析

    Figure 1. 

    图 2  原矿显微镜照片

    Figure 2. 

    图 3  不同类型石英颗粒显微镜照片 (A—通透石英颗粒; B—半通透石英颗粒;C—不通透石英颗粒)

    Figure 3. 

    图 4  不同粒度组成流体包裹体占比

    Figure 4. 

    图 5  浮选显微镜照片(A—BQY+HQY槽内; B—BQY+HQY精矿)

    Figure 5. 

    图 6  不同pH条件下的精矿产率与通透颗粒占比

    Figure 6. 

    图 7  分段浮选产率与流体包裹体占比

    Figure 7. 

    图 8  各阶段产物显微镜照片(A—精矿; B—扫选精矿1; C—扫选精矿2; D—槽内石英)

    Figure 8. 

    图 9  不同浮选产物玻璃体(A—原矿; B—精矿; C—扫选精矿; D—浮选槽内)

    Figure 9. 

    图 10  浮选产物化学成分分析

    Figure 10. 

    图 11  不同浮选产物的红外光谱

    Figure 11. 

    图 12  同浮选产物能谱分析(精矿—谱图1、2;槽内石英—谱图3、4)

    Figure 12. 

    表 1  原矿化学成分分析

    Table 1.  Chemical composition analysis of raw ore /(μg·g−1)

    元素 Al Ca Cu Fe K Li Mg
    含量 154.12 32.22 0.43 44.34 61.40 1.53 26.2
    元素 Ni Mn Na B Ti 合计 SiO2
    含量 0.01 0.82 13.70 0.33 7.40 342.57 99.96*
    注:*代表百分含量。
    下载: 导出CSV

    表 2  不同药剂用量下的精矿产率与通透颗粒占比

    Table 2.  Concentrates yield and percentage of transparent particles under different

    总用量/(g∙t−1)精矿产率/%通透颗粒占比/%
    BQY+HQY =80+16010.5065.21
    BQY+HQY =160+16028.2050.38
    BQY+HQY =240+16034.3048.30
    BQY+HQY =160+8020.5757.65
    下载: 导出CSV

    表 3  不同浮选产物表面原子占比

    Table 3.  Surface atomic percentage of different flotation products /%

    样品 Si O Al Ca Na Cl K S 总量
    谱图1(浮选精矿) 27.37 61.99 0.55 2.32 5.73 0.28 100
    谱图2(浮选精矿) 13.22 58.67 0.38 1.59 11.73 11.02 1.75 1.65 100
    谱图3(浮选槽内) 28.47 71.21 0.32 100
    谱图4(浮选槽内) 22.57 73.96 3.47 100
    下载: 导出CSV
  • [1]

    张海啟, 张亮, 刘磊, 等. 全球高纯石英资源开发利用现状及供需分析[J]. 矿产保护与利用, 2022(5): 49−54.

    ZHANG H Q, ZHANG L, LIU L, et al. Development, utilization, supply and demand of global high purity quartz resources: a systematic review and meta−analysis[J]. Conservation and Utilization of Mineral Resources, 2022(5): 49−54.

    [2]

    施娅颖, 王小强, 张会, 等. 高纯石英的杂质类型及深度提纯技术研究进展[J]. 矿产保护与利用, 2023(6): 76−78.

    SHI Y Y, WANG X Q, ZHANG H, et al. Research progress on impurity characteristics and deep chemical purification technology in high−purity quartz[J]. Conservation and Utilization of Mineral Resources, 2023(6): 76−78.

    [3]

    贺贤举, 管俊芳, 张冲, 等. TFT−LCD玻璃基板用脉石英工艺矿物学研究[J]. 矿产综合利用, 2019(2): 79−82. doi: 10.3969/j.issn.1000-6532.2019.02.016

    HE X J, GUAN J F, ZHANG C, et al. Study on mineralogy of vein quartz for TFT−LCD glass substrate[J]. Multipurpose Utilization of Mineral Resources, 2019(2): 79−82. doi: 10.3969/j.issn.1000-6532.2019.02.016

    [4]

    张立, 胡修权, 张晋, 等. 鄂西地区某脉石英中流体包裹体特征分析[J]. 矿产综合利用, 2023(3): 205−210. doi: 10.3969/j.issn.1000-6532.2023.03.034

    ZHANG L, HU X Q, ZHANG J, et al. Characteristic analysis on fluid inclusions of vein quartz in western Hubei Province[J]. Multipurpose Utilization of Mineral Resources, 2023(3): 205−210. doi: 10.3969/j.issn.1000-6532.2023.03.034

    [5]

    林敏, 徐顺秋, 刘子源, 等. 高纯石英(SiO2)评述(三): 流体包裹体的分析、活化与分离[J]. 矿产综合利用, 2022(6): 26−29. doi: 10.3969/j.issn.1000-6532.2022.06.005

    LIN M, XU S Q, LIU Z Y, et al. Review for high−purity quartz (SiO2) (part Ⅲ): Analysis, activation and separation of fluid inclusions[J]. Multipurpose Utilization of Mineral Resources, 2022(6): 26−29. doi: 10.3969/j.issn.1000-6532.2022.06.005

    [6]

    WINICK J A, MCINTOSH W C, DUNBAR N W. Melt−inclusion−hosted excess Ar−40 in quartz crystals of the Bishop and Bandelier magma systems[J]. Geology, 2001, 29(3): 275−278. doi: 10.1130/0091-7613(2001)029<0275:MIHEAI>2.0.CO;2

    [7]

    武志超, 张海啟, 谭秀民, 等. 高纯石英应用及化学提纯技术研究进展[J]. 化工矿物与加工, 2023, 52(9): 72−80.

    WU Z C, ZHANG H Q, TAN X M, et al. Research progress on the application of high−purity quartz and its chemical refinement technology[J]. Industrial Minerals & Processing, 2023, 52(9): 72−80.

    [8]

    YIN R, JING L, HOU Q, et al. Study on optimization quartz mine for removal gas−liquid inclusions in quartz sand under microwave and acid corrosion[J]. Advanced Materials Research, 2013, 800: 3−7. doi: 10.4028/www.scientific.net/AMR.800.3

    [9]

    马超, 冯安生, 刘长淼, 等. 高纯石英原料矿物学特征与加工技术进展[J]. 矿产保护与利用, 2019, 39(6): 48−57.

    MA C, FENG A S, LIU C M, et al. Mineralogical characteristics and progress in processing technology of raw materials of high purity quartz[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 48−57.

    [10]

    侯清麟, 王迎霞, 侯熠徽. 剔除硅石矿中气液包裹体方法的研究[J]. 包装学报, 2019, 11(6): 38−42. doi: 10.3969/j.issn.1674-7100.2019.06.006

    HOU Q L, WANG Y X, HOU Y H, et al. Study on gas−liquid inclusion methods for removing silica ores[J]. Packaging Journal, 2019, 11(6): 38−42. doi: 10.3969/j.issn.1674-7100.2019.06.006

    [11]

    赵动. 去除微小流体包裹体制备高纯石英砂的研究[D]. 广州: 华南理工大学, 2014.

    ZHAO D. Research on removing tiny fluid inclusions for preparation of high purity quartz sand[D]. Guangzhou: South China University of Technology, 2014.

    [12]

    BUTTRESS A, RODRIGUEZ J, URE A, et al. Production of high purity silica by microfluidic−inclusion fracture using microwave pre−treatment[J]. Minerals Engineering, 2019, 131: 407−419. doi: 10.1016/j.mineng.2018.11.025

    [13]

    马亚梦, 张海啟, 谭秀民, 等. 某矿区高纯石英化学深度提纯技术研究[J]. 矿产保护与利用, 2022, 42(5): 22−27.

    MA Y M, ZHANG H Q, TAN X M, et al. Research on chemical deep purification technology of high−purity quartz in a mining area[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 22−27.

    [14]

    刘广学, 马亚梦, 刘磊, 等. 新疆阿尔泰地区某花岗伟晶岩型石英深度除杂技术研究[J]. 矿产保护与利用, 2022, 42(5): 8−14.

    LIU G X, MA Y M, LIU L, et al. Study on deep impurity removal technology of a granite pegmatite−type high−purity quartz in Altay region of Xinjiang[J]. Conservation and Utilization of Mineral Resources, 2022, 42(5): 8−14.

    [15]

    刘孟浩, 管俊芳, 任子杰, 等. 两地石英岩矿的选矿提纯差异研究[J]. 矿产保护与利用, 2023, 43(2): 99−105.

    LIU M H, GUAN J F, REN Z J, et al. Beneficiation difference of quartzite mines in two places[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 99−105.

    [16]

    刘泰荣. 酸浸辅助微波场去除石英砂中气液包裹体的硏究[D]. 株洲: 湖南工业大学, 2015.

    LIU T R. Research on Removal of fluid inclusions from quartz sand through acid leaching−aided microwave field[D]. Zhuzhou: Hunan University of Technology, 2015.

    [17]

    郑仁基. 不同缺陷类型萤石浮选行为与机理研究[D]. 武汉: 武汉理工大学, 2019.

    ZHENG R J. Study on the flotation behavior and mechanism of the fluorites with different defect type[D]. Wuhan: Wuhan University of Technology, 2019.

    [18]

    伍红强, 邱廷省. 不同粒度赤铁矿和石英的浮选行为研究[J]. 金属矿山, 2021(4): 101−105.

    WU H Q, QIU T S. Study on flotation behavior of hematite and quartz with different particle sizes[J]. Metal Mine, 2021(4): 101−105.

    [19]

    SHEN L F, SUN N, XU R, et al. Adsorption mechanisms of activated surface of quartz and feldspar with mixed NaOL/DDA[J]. Separation and Purification Technology, 2023, 314: 123501. doi: 10.1016/j.seppur.2023.123501

    [20]

    贾蕗繁, 罗溪梅, 王云帆, 等. 阴阳离子组合捕收剂对微细粒赤铁矿与石英浮选分离的研究[J]. 矿产保护与利用, 2024, 44(1): 33−39.

    JIA L F, LUO X M, WANG Y F, et al. Research on the flotation separation of fine−grained hematite and quartz by combined cation−anion collectors[J]. Conservation and Utilization of Mineral Resources, 2024, 44(1): 33−39.

    [21]

    唐劭禹, 张凌燕, 张冲, 等. Fe3+对十二烷基磺酸钠捕收石英的活化作用研究[J]. 非金属矿, 2017, 40(5): 79−81. doi: 10.3969/j.issn.1000-8098.2017.05.024

    TANG S Y, ZHANG L Y, ZHANG C, et al. Study on activation of sodium dodecyl sulfonate collecting quartz by Fe3+[J]. Non−Metallic Mines, 2017, 40(5): 79−81. doi: 10.3969/j.issn.1000-8098.2017.05.024

  • 加载中

(12)

(3)

计量
  • 文章访问数:  26
  • PDF下载数:  2
  • 施引文献:  0
出版历程
收稿日期:  2024-07-29
刊出日期:  2025-06-15

目录