-
摘要:
煤的化学成分从根本上决定了其转化和利用途径。煤分子模型的建立与模拟可以降低实验成本和时间,提高研究效率。复杂的成煤植物和沉积环境导致煤化学成分的复杂性,因此准确构建能够真实反映煤物理化学性质的分子模型对开展煤炭清洁高效利用的研究至关重要。以山西平朔矿区煤泥为样本,通过13C核磁共振波谱、傅里叶变换红外光谱、X射线光电子能谱研究了煤中C、O、N元素的赋存形式,确定了各元素相对含量。结果表明,平朔煤泥中煤不存在芳香甲基,碳元素主要以单环、多环芳香碳形式存在,氧元素主要以酯基、羟基等形式存在,氮元素主要以吡啶型氮形式存在。根据煤质分析结果,构建了分子式为C136H150O18N2的平朔煤分子模型。13C 核磁共振波谱预测验证与密度验证结果表明,模型谱线与实测谱线吻合度较高,模型密度与煤实际密度仅相差0.019 g/cm3,说明模型具有较好的代表性。这项研究为深入理解煤的化学结构提供了重要依据,也为煤的高效清洁转化奠定了理论基础。
Abstract:The conversion and utilization are fundamentally determined by the chemical composition of coal. The establishment and simulation of coal molecular model can reduce the experimental cost and experimental time, and improve the research efficiency. However, the chemical composition of coal exhibited significant complexity due to the complex coal−forming plants and depositional environments. Therefore, the accurate construction of coal molecular models, which can truly reflect the physical and chemical properties of coal, is essential for the research of clean and efficient utilization of coal. In this study, the coal slime from Pingshuo mining area in Shanxi Province was used as the research object. The relative contents and specific chemical states of carbon (C), oxygen (O), and nitrogen (N) were analyzed by 13C nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and X−ray photoelectron spectroscopy (XPS). The results showed that Pingshuo coal slime does not contain any aromatic methyl groups. The carbon element mainly exists in the chemical form of mono− and polycyclic aromatic carbons. The oxygen element mainly exists in chemical forms such as ester group and hydroxyl group. The nitrogen element mainly exists in the chemical form of pyridine compounds. Based on the chemical analysis structure, the molecular model of Pingshuo coal slime was constructed. The molecular model of C136H150O18N2 was optimized by molecular simulation method, and the correctness of the model was verified by 13C NMR spectral line prediction verification and density verification. The 13C NMR spectrum prediction and density verification results showed that the model spectral line is in good agreement with the measured spectral line, and the difference between the model density and the actual density of coal is only 0.019 g/cm3, indicating that the model is well representative. This research provides a crucial molecular−level understanding of the coal's chemical architecture and establishes a robust theoretical foundation for developing efficient and clean coal conversion technologies.
-
Key words:
- Pingshuo /
- coal slime /
- 13C NMR /
- FTIR /
- XPS /
- molecular model
-
-
表 1 平朔煤泥工业分析结果
Table 1. Industrial analysis of Pingshuo coal slime
/% 成分 Mad Ad Vad FCad 含量 1.54 26.74 29.00 43.13 注:Mad空气干燥基水分;Ad空气干燥基水分;Vad空气干燥基挥发分;FCad空气干燥基固定碳。 表 2 煤泥元素分析结果
Table 2. Element analysis of Pingshuo coal slime
/% Cdaf Hdaf Odaf Ndaf St,d 78.55 5.03 13.36 1.33 1.26 注:Cdaf干燥无灰基碳元素含量;Hdaf干燥无灰基氢元素含量;Odaf干燥无灰基氧元素含量;Ndaf干燥无灰基氮元素含量;St,d煤中全硫含量。 表 3 煤泥硫元素分析结果
Table 3. Sulfur elements forms in Pingshuo coal slime
/% St,ad Sp,ad Ss,ad So,ad 1.26 1.01 0.15 0.11 注:St,ad煤中全硫含量;Sp,ad硫铁矿硫含量;Ss,ad硫酸盐硫含量;So,ad有机硫含量。 表 4 0~70 ×10−6峰的分峰拟合结果
Table 4. Peak fitting results of 0~70×10−6 13C NMR spectrum
化学位移
/10−6峰归属 峰数量 峰面积 峰面积
占比/%0~22 脂肪甲基 4 13558 22.54 22~26 芳香甲基 / / / 26~37 亚甲基 2 35184 46.64 37~50 次甲基 1 2333 19.00 50~100 氧−脂肪碳 5 9068 11.82 合计 12 60143 100.00 表 5 (100~160)×10−6峰的分峰拟合结果
Table 5. Peak fitting results of (100~160)×10−6 13C NMR spectrum
化学位移
/10−6峰归属 峰数量 峰面积 峰面积
占比/%100~130 质子化的芳香碳 8 66557 66.27 130~140 桥碳 2 14264 14.20 140~148 烷基化芳香碳 1 7690 7.66 148~163 氧−芳香碳 2 11921 11.87 合计 13 100433 100.00 表 6
2980 ~2800 cm−1分峰拟合结果Table 6. Peak fitting results of
2980 ~2800 cm−1 FTIR spectrum波数/cm−1 峰归属 峰宽 峰面积占比/% 2955 CH3反对称伸缩 23.92 11.02 2921 CH2反对称伸缩 34.93 44.61 2892 CH3对称伸缩 24.99 10.77 2855 CH2对称伸缩 44.13 33.60 合计 100.00 表 7
1800 ~950 cm−1分峰拟合结果Table 7. Peak fitting results of
1800 ~950 cm−1 FTIR spectrum波数/cm−1 峰归属 半峰宽 峰面积占比/% 1713 羧酸羰基C=O伸缩 49.17 1.75 1608 芳香族C−C伸缩 95.80 21.88 1462 甲基、亚甲基 126.83 11.01 1439 甲基、亚甲基 52.63 3.87 1376 醇C−OH面内弯曲 71.10 6.34 1325 醇C−OH面内弯曲 53.12 2.54 1286 酚类C−OH伸缩 75.46 3.19 1256 酚类C−OH伸缩 77.96 5.89 1213 酚类C−OH伸缩 53.39 2.43 1183 酚类C−OH伸缩 57.03 3.51 1158 脂肪醚C−O 38.65 2.59 1133 脂肪醚C−O 25.40 1.90 1117 脂肪醚C−O 13.52 1.12 1106 醇类C−OH伸缩 14.36 0.38 1097 醇类C−OH伸缩 39.36 2.01 1086 醇类C−OH伸缩 48.38 8.08 1063 醇类C−OH伸缩 23.97 1.53 1034 芳香酯类C−O伸缩 36.11 14.08 1018 芳香酯类C−O伸缩 6.22 0.11 1010 芳香酯类C−O伸缩 13.76 2.95 998 无机盐类 13.76 1.64 985 无机盐类 18.00 1.20 合计 100.00 表 8 C1s峰的分峰拟合结果
Table 8. Peak fitting results of C1s
峰归属 峰位置/eV 半峰宽 峰面积 峰面积占比/% C−C 284.8 1.02 245623.31 63.99 C−O 285.5 1.25 89976.52 23.44 C=O 286.5 1.45 48208.40 12.57 合计 383801.23 100.00 表 9 N1s峰的分峰拟合结果
Table 9. Peak fitting results of N1s
峰归属 峰位置/eV 半峰宽 峰面积 峰面积占比/% 吡啶 398.8 1.9 3255.69 20.82 吡咯 400.2 1.5 9052.73 57.88 季氮 401.6 1.6 2516.31 16.09 氮氧化合物 402.9 1.8 815.01 5.21 合计 15639.74 100.00 表 10 平朔煤结构参数
Table 10. Structural parameters of Pingshuo coal slime
质子化芳香碳参数(fHa) 芳香碳−氧参数(fPa) 烷基取代芳香碳参数(fSa) 芳香桥碳参数(fBa) 芳香环聚合度参数(Xb) 脂肪侧链长度参数(I) 66.27 11.87 7.66 14.20 0.166 0.279 -
[1] 夏炎, 许睿, 路学忠, 等. 宁夏煤的分子结构演化特征[J]. 西安科技大学学报, 2024, 44(5): 924−933.
XIA Y, XU R, LU X Z, et al. Molecular structure evolution characteristics of coals in Ningxia Hui Autonomous Region[J]. Journal of Xi'an University of Science and Technology, 2024, 44(5): 924−933.
[2] 王雷雷, 赵丹, 刘丹丹, 等. 炼焦煤结构性质分析及同类煤种替换对配煤焦炭质量影响研究[J]. 煤炭转化, 2024: 1−20[2024−12−28]. http://kns.cnki.net/kcms/detail/14.1163.TQ.20240626.1323.002.html.
WANG L L, ZHAO D, LIU D D, et al. Study on structural properties of coking coal and influence of coals in similar category replacement on quality of coal blending coke[J]. Coal Conversion, 2024: 1−20[2024−12−28]. http://kns.cnki.net/kcms/detail/14.1163.TQ.20240626.1323.002.html.
[3] 于佳晨. 中低阶煤的键合结构对液化与热解反应影响的研究[D]. 北京: 北京化工大学, 2024.
YU J C. Effect of the bonding structure of low and medium rank coals on direct liquefaction and pyrolysis[D]. Beijing: Beijing University of Chemical Technology, 2024.
[4] 郭伟, 杨盼曦, 俞尊义, 等. 陕北富油煤分子模型构建及其热解提油分子动力学特性[J]. 煤田地质与勘探, 2024, 52(7): 132−143.
GUO W, YANG P X, YU Z Y, et al. Molecular modeling of tar−rich coals from northern Shaanxi and their moleculardynamic characteristics in the process of pyrolysis for tar extraction[J]. Coal Geology & Exploration, 2024, 52(7): 132−143.
[5] 赵佳佳. SiO2−H2O纳米流体对煤润湿性的影响及其改性机理研究[D]. 贵阳: 贵州大学, 2024.
ZHAO J J. Effect of SiO2−H2O nanofluid on coal wettability and its modification mechanism[D]. Guiyang: Guizhou University, 2024.
[6] 李焕同, 邹晓艳, 张卫国, 等. 陕南地区中煤阶煤分子结构演化特征[J]. 西安科技大学学报, 2023, 43(6): 1118−1127.
LI H T, ZOU X Y, ZHANG W G, et al. Molecular evolution of medium rank coal in Southern Shaanxi[J]. Journal of Xi’an University of Science and Technology, 2023, 43(6): 1118−1127.
[7] 李雪萍, 曾强. 光谱分析在煤结构研究中的进展[J]. 光谱学与光谱分析, 2022, 42(2): 350−357.
LI X P, ZENG Q. Development and progress of spectral analysis in coal structure research[J]. Spectroscopy and Spectral Analysis, 2022, 42(2): 350−357.
[8] 崔馨, 严煌, 赵培涛. 煤分子结构模型构建及分析方法综述[J]. 中国矿业大学学报, 2019, 48(4): 704−717.
CUI X, YAN H, ZHAO P T. A review on the model construction and analytical methods of coal molecular structure[J]. Journal of China University of Mining & Technology, 2019, 48(4): 704−717.
[9] LIN B, ZHA W, LIU T. Experimental study on molecular structure differences between the tectonic coal and primary coal in Pingdingshan coalfield[J]. Vibrational Spectroscopy, 2019, 103.
[10] CUI X, YAN H, ZHAO P, et al. Modeling of molecular and properties of anthracite base on structural accuracy identification methods[J]. Journal of Molecular Structure, 2019, 1183: 313−323. doi: 10.1016/j.molstruc.2019.01.092
[11] KELEMEN S R, AFEWORKI M, GORBATY M L, et al. Direct characterization of kerogen by x−ray and solid−state 13C nuclear magnetic resonance methods[J]. Energy & Fuels, 2007, 21(3): 1548−1561.
[12] TAKANOHASHI T, KAWASHIMA H. Construction of a model structure for upper freeport coal using 13C NMR chemical shift calculations[J]. Energy & Fuels, 2002, 16(2): 379−387.
[13] KIDENA K, KATSUYAMA M, MURATA S, et al. Study on plasticity of maceral concentrates in terms of their structural features[J]. Energy & Fuels, 2002, 16(5): 1231−1238.
[14] 范文科, 丁立奇, 王安民. 鱼卡煤田褐煤腐植组和惰质组的分子结构差异与模型构建[J]. 煤炭技术, 2024, 43(10): 274−277.
FAN W K, DING L Q, WANG A M. Molecular structure differences and model construction between huminite and inertinite in lignite in Yuqia Coalfield[J]. Coal Technology, 2024, 43(10): 274−277.
[15] ERDENETSOGT B, LEE I, LEE S K, et al. Solid−state C−13 CP/MAS NMR study of Baganuur coal, Mongolia: Oxygen−loss during coalification from lignite to subbituminous rank[J]. International Journal of Coal Geology, 2010, 82(1/2): 37−44. doi: 10.1016/j.coal.2010.02.005
[16] 黄金山. 淮北烟煤分子模型构建及润湿性能研究[D]. 淮南: 安徽理工大学, 2024.
HUANG J S. Molecular modeling and wettability study of Huaibei bituminous coal[D]. Huainan: Anhui University of Science and Technology, 2024.
[17] 温志辉, 方智银, 赵延霞, 等. 无烟煤分子模型构建及优化方法研究[J]. 中国安全生产科学技术, 2024, 20(4): 94−100.
WEN Z H, FANG Z Y, ZHAO Y X, et al. Research on construction and optimization method of anthracite molecular model[J]. Journal of Safety Science and Technology, 2024, 20(4): 94−100.
[18] PING A, XIA W, PENG Y, et al. Comparative filtration and dewatering behavior of vitrinite and inertinite of bituminous coal: Experiment and simulation study[J]. International Journal of Mining Science and Technology, 2021, 31(2): 233−240.
[19] GAO B, WU C, SONG Y, et al. Structural characterization of high fidelity for bituminous and semi−anthracite: Insights from spectral analysis and modeling[J]. Fuel (Guildford), 2022, 315: 123183. doi: 10.1016/j.fuel.2022.123183
[20] SOLUM M S, PUGMIRE R J, GRANT D M. 13C solid−state NMR of argonne premium coals[J]. Energy & Fuels, 1989, 3(2): 187−193.
[21] 夏阳超. 褐煤表面吸水机理及润湿性调控的分子模拟研究[D]. 太原: 太原理工大学, 2017.
XIA Y C. Molecular simulations on adsorption of water onto lignite surface and its wettability modification[D]. Taiyuan: Taiyuan University of Technology, 2017.
[22] 贾建波, 曾凡桂, 孙蓓蕾. 神东2−2煤镜质组大分子结构模型13C−NMR谱的构建与修正[J]. 燃料化学学报, 2011(9): 652−657.
JIA J B, ZENG F G, SUN B L. Construction and modification of macromolecular structure model for vitrinite from Shendong 2−2 coal[J]. Journal of Fuel Chemistry and Technology, 2011(9): 652−657.
-