Design of Novel Oleic Acid−Based Collectors for Ascharite/Serpentine Flotation Separation: A Density Functional Theory Approach
-
摘要:
我国硼资源需求量大但供应不足,硼镁铁矿磁选尾矿中硼镁石的高效回收成为硼资源利用的关键,而硼镁石与含镁脉石矿物蛇纹石的高效分离是该领域的一大难题。基于矿物表面特性及浮选药剂分子特性,通过优化药剂设计与使用机制,实现了尾矿中硼镁石的高效富集与回收。矿物晶面理论计算表明,硼镁石表面的镁活性位点具有更高的电子活性,而蛇纹石表面则以富含硅氧位点为主,表面可浮性较差。在工业常用油酸的基础上,通过硫酸酸化、羧基碳原子氧化及过氧化氢氧化,设计出三种优化捕收剂OA−1、OA−2、OA−3,并按质量比8∶1∶1的质量比混合形成捕收剂OA−n。搭配抑制剂酸化水玻璃使用,实验结果表明,优化后的OA−n药剂在溶解性、分散性及选择性方面均优于传统油酸。通过系统研究捕收剂用量、抑制剂种类与用量、矿浆pH及温度对浮选效果的影响,确定了最佳条件:在pH 9.00、温度30 ℃的条件下,OA−n与酸化水玻璃组合获得了B2O3品位9.98%、回收率61.22%的硼精矿镁石。分析显示,优化后的OA−n捕收剂在引入羟基基团后,不仅提升了溶解分散性能,还增加了与硼镁石表面活性位点结合的作用位点。酸化水玻璃通过在蛇纹石表面形成亲水性硅酸胶粒,显著降低其可浮性,从而强化了硼镁石与蛇纹石之间的分离效果。本研究提出的新型OA−n捕收剂与酸化水玻璃的协同作用,为硼镁铁矿磁选尾矿中硼资源的高效富集及回收提供了可靠方案,显著减少了硼资源流失与固废排放,为尾矿高值化再利用提供了重要技术支撑。
Abstract:China's demand for boron resources is robust, yet the supply remains inadequate. Effective recovery of ascharite from the by−products of ludwigite magnetic separation has emerged as a pivotal strategy for improving resource utilization. However, the separation of ascharite from serpentine, a magnesium−bearing gangue mineral, is a significant challenge in this field. The present study is based on the surface characteristics of minerals and the molecular properties of flotation reagents. By optimizing design and utilization mechanism of the reagents, the efficient enrichment and recovery of ascharite in tailings was successfully achieved. Theoretical calculations of mineral crystal planes indicate that the Mg active sites on the surface of ascharite exhibit higher electronic activity, while the surface of serpentine, which exhibits poor surface floatability, is predominantly rich in silicon and oxygen sites. The design of three types of collectors (OA−1, OA−2, and OA−3) was informed by the prevalent use of oleic acid. This design was achieved through a series of chemical reactions, namely sulfuric acid oxidation, carboxyl carbon atom oxidation, and hydrogen peroxide oxidation. The OA−n collector was produced by mixing in a ratio of 8∶1∶1 with the three collectors. The experimental results demonstrate that the optimized collector OA−n exhibits superior properties in terms of solubility, dispersion, and selectivity when compared to the traditional oleic acid. A comprehensive investigation was carried out to determine the effect of various parameters on the flotation effect, encompassing the collector dosage, inhibitor type and dosage, pulp pH, and temperature. Through experimentation, it was determined that the optimal conditions for flotation were as follows: 600 g/t collector dosage,
6000 g/t depressant dosage, pulp pH of 9.00 and temperature of 30 ℃. The synergistic application of OA−n and acidified sodium silicate resulted in an exceptional flotation index of ascharite B2O3, with a B2O3 grade of 9.98% and a recovery of 61.22%. The analysis show that following the introduction of hydroxyl groups, the optimized OA−n collector enhance solubility and dispersion performance, while concurrently introducing a novel action site that binds to the surface active site of ascharite. The incorporation of acidified sodium silicate is shown to significantly reduce the floatability of serpentine, a phenomenon attributable to the formation of hydrophilic silica colloidal particles on the surface of the latter. This in turn leads to an increase in the separation efficiency between ascharite and serpentine. The present study proposes a reliable scheme for the efficient enrichment and recovery of boron resources in the magnetic separation tailings of ludwigite. This scheme is based on the synergistic effect of a new OA−n collector and acidified sodium silicate. The proposed scheme would significantly reduce the loss of boron resources and solid waste discharge, and provide important technical support for the high value reuse of tailings.-
Key words:
- ascharite /
- serpentine /
- characteristics of crystal plane /
- flotation /
- oleic acid /
- density functional theory
-
-
表 1 尾矿化学多元素分析结果
Table 1. Multi−element chemical analysis of tailings
/% 成分 TF B2O3 SiO2 Al2O3 CaO MgO Na2O K2O 含量 4.40 5.81 36.62 4.77 1.84 30.44 1.36 1.67 成分 S P TiO2 Mn Ba C 烧失(原始值) 含量 0.63 0.061 0.17 0.053 0.023 0.53 10.00 表 2 尾矿XRD分析结果
Table 2. XRD analysis of tailings
/% 矿物 钠长石 石英 蛇纹石 云母 闪石 绿泥石 含量 16.90 1.74 20.63 7.65 2.39 14.54 矿物 方解石 白云石 微斜长石 硼镁石 高岭土 其他 含量 0.89 2.33 2.53 23.61 6.76 0.03 表 3 尾矿筛分分析
Table 3. Screening analysis of tailings
粒级/mm 产率/% B2O3含量/% B2O3回收率/% 个别 负累积 个别 负累积 个别 负累积 +0.30 8.19 100.00 1.38 5.86 1.93 100.00 −0.30+0.10 25.42 91.81 1.93 6.26 8.37 98.07 −0.10+0.075 8.64 66.38 2.87 7.92 4.23 89.70 −0.075+0.045 13.24 57.74 3.83 8.68 8.65 85.47 −0.045+0.038 1.70 44.51 3.80 10.12 1.10 76.82 −0.038 42.81 42.81 10.37 10.37 75.72 75.72 合计 100.00 5.86 100.00 表 4 优化前后的捕收剂浮选性能对比
Table 4. Comparison of collector flotation performance before and after optimization
捕收剂
种类产品名称 产率
/%B2O3品位
/%B2O3回收率
/%OA 硼粗精矿 27.58 9.37 45.43 尾矿 72.42 4.29 54.57 原矿 100.00 5.69 100.00 OA−n 硼粗精矿 29.64 9.63 50.38 尾矿 70.36 3.99 49.62 原矿 100.00 5.66 100.00 -
[1] 张福祥, 赵莎, 刘卓, 等. 全球硼矿资源现状与利用趋势[J]. 矿产保护与利用, 2019, 39(6): 142−151.
ZHANG F X, ZHAO S, LIU Z, et al. Current situation and utilization trend of the global boron resources[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 142−151.
[2] HENCKENS M, DRIESSEN P, WORRELL E. Towards a sustainable use of primary boron: Approach to a sustainable use of primary resources[J]. Resources, Conservation and Recycling, 2015, 103: 9−18. doi: 10.1016/j.resconrec.2015.07.005
[3] SHIREEN F, NAWAZ M A, CHEN C, et al. Boron: Functions and approaches to enhance its availability in plants for sustainable agriculture[J]. International Journal of Molecular Sciences, 2018, 19(7): 1856. doi: 10.3390/ijms19071856
[4] HUANG Z, WANG S, DEWHURST R D, et al. Boron: Its role in energy-related processes and applications[J]. Angewandte Chemie International Edition, 2020, 59(23): 8800−8816. doi: 10.1002/anie.201911108
[5] ZHANG Z, PENEV E S, YAKOBSON B I. Two−dimensional boron: Structures, properties and applications[J]. Chemical Society Reviews, 2017, 46(22): 6746−6763. doi: 10.1039/C7CS00261K
[6] DONG M, ZHOU S, XUE X, et al. The potential use of boron containing resources for protection against nuclear radiation[J]. Radiation Physics and Chemistry, 2021, 188: 109601. doi: 10.1016/j.radphyschem.2021.109601
[7] WANG L L, WANG Q S, WU L. Analysis of global exploration situation and potential of boron resources[J]. China Mining Magazine, 2019, 28(4): 74−78.
[8] 袁建国, 屈云燕, 刘秋颖, 等. 中国硼矿资源供需趋势分析[J]. 中国矿业, 2018, 27(5): 9−12+27.
YUAN J G, QU Y Y, LIU Q Y, et al. Analysis of the supply and demand tendency of boron resoursces in China[J]. China Mining Magazine, 2018, 27(5): 9−12+27.
[9] 黄琳, 孙艳, 郭唯明, 等. 当前新材料及所需战略性矿产概述[J]. 中国矿业, 2018, 27(8): 1−8. doi: 10.12075/j.issn.1004-4051.2018.08.015
HUANG L, SUN Y, GUO W M, et al. Summary of current new materials and necessary startegic minral resources[J]. China Mining Magazine, 2018, 27(8): 1−8. doi: 10.12075/j.issn.1004-4051.2018.08.015
[10] SCHALLER W T. The identity of ascharite, camsellite, and β−ascharite with szaibelyite; and some relations of the magnesium borate minerals[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1942, 27(7): 467−486.
[11] FU X J, ZHAO J Q, CHEN S Y, et al. Comprehensive utilization of ludwigite ore based on metallizing reduction and magnetic separation[J]. Journal of Iron and Steel Research, International, 2015, 22(8): 672−680. doi: 10.1016/S1006-706X(15)30056-X
[12] 付喜林, 杨晓军, 符寒光, 等. 浮选法富集低品位含硼尾矿研究[J]. 矿产综合利用, 2018(1): 101−105. doi: 10.3969/j.issn.1000-6532.2018.02.022
FU X L, YANG X J, FU H G, et al. Research on enrichment of low−grade boron bearing tailings by froth flotation[J]. Multipurpose Utilization of Mineral Resources, 2018(1): 101−105. doi: 10.3969/j.issn.1000-6532.2018.02.022
[13] 程仁举, 邹春林, 李艳军, 等. 丹东某低品位硼镁石矿石浮选试验[J]. 金属矿山, 2012, 41(6): 72−74. doi: 10.3969/j.issn.1001-1250.2012.06.020
CEHNG R J, ZHOU C L, LI Y J, et al. Experimental research on flotation processing technology for low grade ascharite ore in Dandong[J]. Metal Mine, 2012, 41(6): 72−74. doi: 10.3969/j.issn.1001-1250.2012.06.020
[14] 张涛, 梁海军, 薛向欣. 辽宁凤城含铀硼铁复合矿分选研究[J]. 材料与冶金学报, 2009, 8(4): 241−245. doi: 10.3969/j.issn.1671-6620.2009.04.001
ZHANG T, LIANG H J, XUE X X. Elementary research on Liaoning Fengcheng uranium−bearing B−Fe complex ore separation[J]. Journal of Material and Metallurgy, 2009, 8(4): 241−245. doi: 10.3969/j.issn.1671-6620.2009.04.001
[15] 李治杭, 熊堃, 左可胜, 等. 羧甲基纤维素对硼镁石/蛇纹石浮选的影响及其作用机理[J]. 金属矿山, 2024, (10): 107−111.
LI Z H, XIONG K, ZUO K S, et al. Effect of carboxymethyl cellulose on flotation of ascharite/serpentine and Its action mechanism[J]. Metal Mine, 2024, 10: 107−111.
[16] 李治杭, 韩跃新, 李艳军, 等. 蛇纹石对硼镁石浮选的影响[J]. 东北大学学报(自然科学版), 2017, 38(8): 1154−1157. doi: 10.12068/j.issn.1005-3026.2017.08.019
LI Z H, HAN Y X, LI Y J, et al. Effect of serpentine on flotation of ascharite[J]. Journal of Northeastern University (Natural Science), 2017, 38(8): 1154−1157. doi: 10.12068/j.issn.1005-3026.2017.08.019
[17] 李治杭, 韩跃新, 李艳军, 等. 蛇纹石及硼镁石浮选过程中团聚与分散机理[J]. 中国有色金属学报, 2017, 27(3): 613−620.
LI Z H, HAN Y X, LI Y J, et al. Mechanism of agglomeration and dispersion during flotation process of serpentine and ascharite[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(3): 613−620.
[18] LI Z H, HAN Y X, LI Y J, et al. Effect of serpentine and sodium hexametaphosphate on ascharite flotation[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(8): 1841−1848. doi: 10.1016/S1003-6326(17)60207-3
[19] 程仁举, 邓善芝, 李成秀, 等. 不同抑制剂对低品位硼镁石浮选分离影响研究[J]. 化工矿物与加工, 2016, 45(7): 31−33.
CHENG R J, DENG S Z, LI C X, et al. Study of influence of different inhibitors on flotation and separation of low grade ascharite[J]. Industrial Minerals & Processing, 2016, 45(7): 31−33.
[20] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16 Rev. B. 01[Z]. Wallingford, CT. 2016.
[21] PETERSSON A, BENNETT A, TENSFELDT T G, et al. A complete basis set model chemistry. Ⅰ. The total energies of closed‐shell atoms and hydrides of the first-row elements[J]. The Journal of Chemical Physics, 1988, 89(4): 2193−2218. doi: 10.1063/1.455064
[22] HARIHARAN P, POPLE J A. Accuracy of AH n equilibrium geometries by single determinant molecular orbital theory[J]. Molecular Physics, 1974, 27(1): 209−214. doi: 10.1080/00268977400100171
[23] 印万忠, 孙传尧. 硅酸盐矿物浮选原理研究现状[J]. 矿产保护与利用, 2001(3): 17−22. doi: 10.3969/j.issn.1001-0076.2001.02.004
YIN W Z, SUN C Y. Review on research status on flotation principles of silicate minerals[J]. Conservation and Utilization of Mineral Resources, 2001(3): 17−22. doi: 10.3969/j.issn.1001-0076.2001.02.004
[24] SCROCCO E, TOMASI J. Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials[M]. Advances in quantum chemistry. Elsevier. 1978: 115−193.
[25] 唐德身. 硼镁石和蛇纹石的电动性质和可浮性[J]. 化工矿山技术, 1984(6): 5−11.
TANG D S. Electrokinetic properties and floatability of bornite and serpentine[J]. Chemical Mining Technology, 1984(6): 5−11.
[26] 熊浩, 刘建, 秦晓艳, 等. 改性水玻璃抑制剂研究进展[J]. 矿产保护与利用, 2023, 43(6): 138−145.
XIONG H, LIU J, QIN X Y, et al. Review on modified water glass inhibitors[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 138−145.
-