基于密度泛函理论的硼镁石/蛇纹石浮选分离新型油酸类捕收剂研究

黄磊, 卢宇熙, 宋鑫, 袁壮, 王祥, 刘小银, 陈雯. 基于密度泛函理论的硼镁石/蛇纹石浮选分离新型油酸类捕收剂研究[J]. 矿产保护与利用, 2025, 45(3): 87-96. doi: 10.13779/j.cnki.issn1001-0076.2025.08.008
引用本文: 黄磊, 卢宇熙, 宋鑫, 袁壮, 王祥, 刘小银, 陈雯. 基于密度泛函理论的硼镁石/蛇纹石浮选分离新型油酸类捕收剂研究[J]. 矿产保护与利用, 2025, 45(3): 87-96. doi: 10.13779/j.cnki.issn1001-0076.2025.08.008
HUANG Lei, LU Yuxi, SONG Xin, YUAN Zhuang, WANG Xiang, LIU Xiaoyin, CHEN Wen. Design of Novel Oleic Acid−Based Collectors for Ascharite/Serpentine Flotation Separation: A Density Functional Theory Approach[J]. Conservation and Utilization of Mineral Resources, 2025, 45(3): 87-96. doi: 10.13779/j.cnki.issn1001-0076.2025.08.008
Citation: HUANG Lei, LU Yuxi, SONG Xin, YUAN Zhuang, WANG Xiang, LIU Xiaoyin, CHEN Wen. Design of Novel Oleic Acid−Based Collectors for Ascharite/Serpentine Flotation Separation: A Density Functional Theory Approach[J]. Conservation and Utilization of Mineral Resources, 2025, 45(3): 87-96. doi: 10.13779/j.cnki.issn1001-0076.2025.08.008

基于密度泛函理论的硼镁石/蛇纹石浮选分离新型油酸类捕收剂研究

  • 基金项目: 国家重点研发计划“固废资源化”专项课题(2020YFC1909802)
详细信息
    作者简介: 黄磊(2001—),男,湖南张家界人,硕士研究生, E-mail:huanglei_1015@163.com
    通讯作者: 陈雯(1965—),女,湖南长沙人,博士,教授,博士研究生导师,从事黑色金属和铁基共伴生矿产资源综合利用等方面的研究工作,E-mail:wenchen@minmetals.com
  • 中图分类号: TD923+.13

Design of Novel Oleic Acid−Based Collectors for Ascharite/Serpentine Flotation Separation: A Density Functional Theory Approach

More Information
  • 我国硼资源需求量大但供应不足,硼镁铁矿磁选尾矿中硼镁石的高效回收成为硼资源利用的关键,而硼镁石与含镁脉石矿物蛇纹石的高效分离是该领域的一大难题。基于矿物表面特性及浮选药剂分子特性,通过优化药剂设计与使用机制,实现了尾矿中硼镁石的高效富集与回收。矿物晶面理论计算表明,硼镁石表面的镁活性位点具有更高的电子活性,而蛇纹石表面则以富含硅氧位点为主,表面可浮性较差。在工业常用油酸的基础上,通过硫酸酸化、羧基碳原子氧化及过氧化氢氧化,设计出三种优化捕收剂OA−1、OA−2、OA−3,并按质量比8∶1∶1的质量比混合形成捕收剂OA−n。搭配抑制剂酸化水玻璃使用,实验结果表明,优化后的OA−n药剂在溶解性、分散性及选择性方面均优于传统油酸。通过系统研究捕收剂用量、抑制剂种类与用量、矿浆pH及温度对浮选效果的影响,确定了最佳条件:在pH 9.00、温度30 ℃的条件下,OA−n与酸化水玻璃组合获得了B2O3品位9.98%、回收率61.22%的硼精矿镁石。分析显示,优化后的OA−n捕收剂在引入羟基基团后,不仅提升了溶解分散性能,还增加了与硼镁石表面活性位点结合的作用位点。酸化水玻璃通过在蛇纹石表面形成亲水性硅酸胶粒,显著降低其可浮性,从而强化了硼镁石与蛇纹石之间的分离效果。本研究提出的新型OA−n捕收剂与酸化水玻璃的协同作用,为硼镁铁矿磁选尾矿中硼资源的高效富集及回收提供了可靠方案,显著减少了硼资源流失与固废排放,为尾矿高值化再利用提供了重要技术支撑。

  • 加载中
  • 图 1  硼镁石(a)和蛇纹石(b)两种单矿物XRD结果

    Figure 1. 

    图 2  硼镁石(a)和蛇纹石(b)优化后晶胞模型

    Figure 2. 

    图 3  尾矿浮选实验原则流程

    Figure 3. 

    图 4  硼镁石(110)解理面特性以及表面电子差分密度

    Figure 4. 

    图 5  硼镁石(110)解理面分态密度与各原子的分态密度

    Figure 5. 

    图 6  蛇纹石(001)解理面特性以及表面电子差分密度

    Figure 6. 

    图 7  蛇纹石(001)解理面分态密度与各原子的分态密度

    Figure 7. 

    图 8  优化后的OA−n类药剂的位阻效应指数和油水分配系数

    Figure 8. 

    图 9  优化后的OA−n系列捕收剂分子静电势变化

    Figure 9. 

    图 10  抑制剂种类对浮选精矿指标的影响

    Figure 10. 

    图 11  抑制剂酸化水玻璃用量对浮选精矿指标的影响

    Figure 11. 

    图 12  混合捕收剂OA−n用量对浮选精矿指标的影响

    Figure 12. 

    图 13  矿浆pH值对浮选精矿指标的影响

    Figure 13. 

    图 14  矿浆温度对浮选精矿指标的影响

    Figure 14. 

    表 1  尾矿化学多元素分析结果

    Table 1.  Multi−element chemical analysis of tailings /%

    成分 TF B2O3 SiO2 Al2O3 CaO MgO Na2O K2O
    含量4.405.8136.624.771.8430.441.361.67
    成分SPTiO2MnBaC烧失(原始值)
    含量0.630.0610.170.0530.0230.5310.00
    下载: 导出CSV

    表 2  尾矿XRD分析结果

    Table 2.  XRD analysis of tailings /%

    矿物 钠长石 石英 蛇纹石 云母 闪石 绿泥石
    含量16.901.7420.637.652.3914.54
    矿物方解石白云石微斜长石硼镁石高岭土其他
    含量0.892.332.5323.616.760.03
    下载: 导出CSV

    表 3  尾矿筛分分析

    Table 3.  Screening analysis of tailings

    粒级/mm 产率/% B2O3含量/% B2O3回收率/%
    个别 负累积 个别 负累积 个别 负累积
    +0.30 8.19 100.00 1.38 5.86 1.93 100.00
    −0.30+0.10 25.42 91.81 1.93 6.26 8.37 98.07
    −0.10+0.075 8.64 66.38 2.87 7.92 4.23 89.70
    −0.075+0.045 13.24 57.74 3.83 8.68 8.65 85.47
    −0.045+0.038 1.70 44.51 3.80 10.12 1.10 76.82
    −0.038 42.81 42.81 10.37 10.37 75.72 75.72
    合计 100.00 5.86 100.00
    下载: 导出CSV

    表 4  优化前后的捕收剂浮选性能对比

    Table 4.  Comparison of collector flotation performance before and after optimization

    捕收剂
    种类
    产品名称产率
    /%
    B2O3品位
    /%
    B2O3回收率
    /%
    OA硼粗精矿27.589.3745.43
    尾矿72.424.2954.57
    原矿100.005.69100.00
    OA−n硼粗精矿29.649.6350.38
    尾矿70.363.9949.62
    原矿100.005.66100.00
    下载: 导出CSV
  • [1]

    张福祥, 赵莎, 刘卓, 等. 全球硼矿资源现状与利用趋势[J]. 矿产保护与利用, 2019, 39(6): 142−151.

    ZHANG F X, ZHAO S, LIU Z, et al. Current situation and utilization trend of the global boron resources[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 142−151.

    [2]

    HENCKENS M, DRIESSEN P, WORRELL E. Towards a sustainable use of primary boron: Approach to a sustainable use of primary resources[J]. Resources, Conservation and Recycling, 2015, 103: 9−18. doi: 10.1016/j.resconrec.2015.07.005

    [3]

    SHIREEN F, NAWAZ M A, CHEN C, et al. Boron: Functions and approaches to enhance its availability in plants for sustainable agriculture[J]. International Journal of Molecular Sciences, 2018, 19(7): 1856. doi: 10.3390/ijms19071856

    [4]

    HUANG Z, WANG S, DEWHURST R D, et al. Boron: Its role in energy-related processes and applications[J]. Angewandte Chemie International Edition, 2020, 59(23): 8800−8816. doi: 10.1002/anie.201911108

    [5]

    ZHANG Z, PENEV E S, YAKOBSON B I. Two−dimensional boron: Structures, properties and applications[J]. Chemical Society Reviews, 2017, 46(22): 6746−6763. doi: 10.1039/C7CS00261K

    [6]

    DONG M, ZHOU S, XUE X, et al. The potential use of boron containing resources for protection against nuclear radiation[J]. Radiation Physics and Chemistry, 2021, 188: 109601. doi: 10.1016/j.radphyschem.2021.109601

    [7]

    WANG L L, WANG Q S, WU L. Analysis of global exploration situation and potential of boron resources[J]. China Mining Magazine, 2019, 28(4): 74−78.

    [8]

    袁建国, 屈云燕, 刘秋颖, 等. 中国硼矿资源供需趋势分析[J]. 中国矿业, 2018, 27(5): 9−12+27.

    YUAN J G, QU Y Y, LIU Q Y, et al. Analysis of the supply and demand tendency of boron resoursces in China[J]. China Mining Magazine, 2018, 27(5): 9−12+27.

    [9]

    黄琳, 孙艳, 郭唯明, 等. 当前新材料及所需战略性矿产概述[J]. 中国矿业, 2018, 27(8): 1−8. doi: 10.12075/j.issn.1004-4051.2018.08.015

    HUANG L, SUN Y, GUO W M, et al. Summary of current new materials and necessary startegic minral resources[J]. China Mining Magazine, 2018, 27(8): 1−8. doi: 10.12075/j.issn.1004-4051.2018.08.015

    [10]

    SCHALLER W T. The identity of ascharite, camsellite, and β−ascharite with szaibelyite; and some relations of the magnesium borate minerals[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1942, 27(7): 467−486.

    [11]

    FU X J, ZHAO J Q, CHEN S Y, et al. Comprehensive utilization of ludwigite ore based on metallizing reduction and magnetic separation[J]. Journal of Iron and Steel Research, International, 2015, 22(8): 672−680. doi: 10.1016/S1006-706X(15)30056-X

    [12]

    付喜林, 杨晓军, 符寒光, 等. 浮选法富集低品位含硼尾矿研究[J]. 矿产综合利用, 2018(1): 101−105. doi: 10.3969/j.issn.1000-6532.2018.02.022

    FU X L, YANG X J, FU H G, et al. Research on enrichment of low−grade boron bearing tailings by froth flotation[J]. Multipurpose Utilization of Mineral Resources, 2018(1): 101−105. doi: 10.3969/j.issn.1000-6532.2018.02.022

    [13]

    程仁举, 邹春林, 李艳军, 等. 丹东某低品位硼镁石矿石浮选试验[J]. 金属矿山, 2012, 41(6): 72−74. doi: 10.3969/j.issn.1001-1250.2012.06.020

    CEHNG R J, ZHOU C L, LI Y J, et al. Experimental research on flotation processing technology for low grade ascharite ore in Dandong[J]. Metal Mine, 2012, 41(6): 72−74. doi: 10.3969/j.issn.1001-1250.2012.06.020

    [14]

    张涛, 梁海军, 薛向欣. 辽宁凤城含铀硼铁复合矿分选研究[J]. 材料与冶金学报, 2009, 8(4): 241−245. doi: 10.3969/j.issn.1671-6620.2009.04.001

    ZHANG T, LIANG H J, XUE X X. Elementary research on Liaoning Fengcheng uranium−bearing B−Fe complex ore separation[J]. Journal of Material and Metallurgy, 2009, 8(4): 241−245. doi: 10.3969/j.issn.1671-6620.2009.04.001

    [15]

    李治杭, 熊堃, 左可胜, 等. 羧甲基纤维素对硼镁石/蛇纹石浮选的影响及其作用机理[J]. 金属矿山, 2024, (10): 107−111.

    LI Z H, XIONG K, ZUO K S, et al. Effect of carboxymethyl cellulose on flotation of ascharite/serpentine and Its action mechanism[J]. Metal Mine, 2024, 10: 107−111.

    [16]

    李治杭, 韩跃新, 李艳军, 等. 蛇纹石对硼镁石浮选的影响[J]. 东北大学学报(自然科学版), 2017, 38(8): 1154−1157. doi: 10.12068/j.issn.1005-3026.2017.08.019

    LI Z H, HAN Y X, LI Y J, et al. Effect of serpentine on flotation of ascharite[J]. Journal of Northeastern University (Natural Science), 2017, 38(8): 1154−1157. doi: 10.12068/j.issn.1005-3026.2017.08.019

    [17]

    李治杭, 韩跃新, 李艳军, 等. 蛇纹石及硼镁石浮选过程中团聚与分散机理[J]. 中国有色金属学报, 2017, 27(3): 613−620.

    LI Z H, HAN Y X, LI Y J, et al. Mechanism of agglomeration and dispersion during flotation process of serpentine and ascharite[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(3): 613−620.

    [18]

    LI Z H, HAN Y X, LI Y J, et al. Effect of serpentine and sodium hexametaphosphate on ascharite flotation[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(8): 1841−1848. doi: 10.1016/S1003-6326(17)60207-3

    [19]

    程仁举, 邓善芝, 李成秀, 等. 不同抑制剂对低品位硼镁石浮选分离影响研究[J]. 化工矿物与加工, 2016, 45(7): 31−33.

    CHENG R J, DENG S Z, LI C X, et al. Study of influence of different inhibitors on flotation and separation of low grade ascharite[J]. Industrial Minerals & Processing, 2016, 45(7): 31−33.

    [20]

    FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16 Rev. B. 01[Z]. Wallingford, CT. 2016.

    [21]

    PETERSSON A, BENNETT A, TENSFELDT T G, et al. A complete basis set model chemistry. Ⅰ. The total energies of closed‐shell atoms and hydrides of the first-row elements[J]. The Journal of Chemical Physics, 1988, 89(4): 2193−2218. doi: 10.1063/1.455064

    [22]

    HARIHARAN P, POPLE J A. Accuracy of AH n equilibrium geometries by single determinant molecular orbital theory[J]. Molecular Physics, 1974, 27(1): 209−214. doi: 10.1080/00268977400100171

    [23]

    印万忠, 孙传尧. 硅酸盐矿物浮选原理研究现状[J]. 矿产保护与利用, 2001(3): 17−22. doi: 10.3969/j.issn.1001-0076.2001.02.004

    YIN W Z, SUN C Y. Review on research status on flotation principles of silicate minerals[J]. Conservation and Utilization of Mineral Resources, 2001(3): 17−22. doi: 10.3969/j.issn.1001-0076.2001.02.004

    [24]

    SCROCCO E, TOMASI J. Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials[M]. Advances in quantum chemistry. Elsevier. 1978: 115−193.

    [25]

    唐德身. 硼镁石和蛇纹石的电动性质和可浮性[J]. 化工矿山技术, 1984(6): 5−11.

    TANG D S. Electrokinetic properties and floatability of bornite and serpentine[J]. Chemical Mining Technology, 1984(6): 5−11.

    [26]

    熊浩, 刘建, 秦晓艳, 等. 改性水玻璃抑制剂研究进展[J]. 矿产保护与利用, 2023, 43(6): 138−145.

    XIONG H, LIU J, QIN X Y, et al. Review on modified water glass inhibitors[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 138−145.

  • 加载中

(14)

(4)

计量
  • 文章访问数:  18
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2024-11-11
刊出日期:  2025-06-15

目录