Progress of Niobium and Tantalum Analytical Technology
-
摘要: 铌钽是发展新兴产业所需的功能性和结构性材料,铌钽矿产是国家重点支持的战略新兴矿产资源,开展相关物料中铌钽的分析技术研究具有重要意义。由于铌和钽的物理化学性质十分相似,彼此难以分离,且易水解,加之地质样品分解困难,因此铌和钽的分析测试一直困扰着分析工作者。本文重点对铌钽元素分析中的样品前处理技术和现代分析测试技术进行综述。样品前处理是铌钽分析的关键环节,结合分析方法和样品特性,选择合理的样品分解和分离富集方法是准确测定铌钽的前提。仪器分析是现代分析测试技术的主流,电感耦合等离子体发射光谱/质谱法(ICP-OES/MS)是目前测定铌钽应用最多的方法,需要解决共存组分的干扰、基体效应和盐类影响等问题。激光剥蚀(LA)技术、X射线荧光光谱法(XRF)和中子活化分析法(NAA)采用固体进样,避免了前期样品处理的繁琐步骤和杂质的引入,是铌钽元素分析发展的方向。Abstract: As strategic emerging mineral resources supported by the state, niobium and tantalum are the functional and structural materials needed for the development of emerging industries. Therefore, conducting research on the determination of niobium and tantalum in related materials is of great significance. Unfortunately, niobium and tantalum have similar physical and chemical properties, making it difficult to separate them. However, they are easy to hydrate. Geological samples are difficult to be decomposed, thus the determination of niobium and tantalum has always been a difficult issue. Sample pre-treatment technology and modern analytical techniques are reviewed in this paper. Sample pre-treatment is the key step for niobium and tantalum analysis, therefore a suitable sample digestion and preconcentration method combined with analytical methods and sample characteristics is the premise of accurate determination of niobium and tantalum. Instrument analysis is the mainstream of modern analytical technology. Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) are the most widely used methods for the determination of niobium and tantalum, but it is necessary to solve problems such as coexisting component interference, matrix effects and salt influence. Laser Ablation (LA), X-ray Fluorescence Spectrometry (XRF), and Neutron Activation Analysis (NAA) are the development direction of tantalum and niobium analysis, due to the fact that they avoid the complicated sample pre-treatment and addition of impurities by solid sample introduction.
-
-
表 1 铌、钽及其化合物的熔点和沸点
Table 1. The melting and boiling point of niobium, tantalum and its compounds
铌钽及其化合物 熔点(℃) 沸点(℃) Nb 2468 4742 NbC 3490 4300 Nb2O5 1485 - NbF5 72 236 Ta 2996 5425 TaC 3880 5500 Ta2O5 1872 - TaF5 96.8 230 表 2 分析铌钽的各类样品处理方法和主要分析测试技术重要内容汇总
Table 2. Summary of important contents of various samples preparation methods and analytical techniques
测定元素 物料 分析方法 样品前处理 主要分析测试技术 参考文献 铌、钽 钢 COL 氢氟酸-硝酸分解样品,反相高效液相色谱分离 铌(钽)-2-(5-溴-2吡啶偶氮)-5-二乙氨基苯酚-酒石酸三元显色体系,柱前螯合 [7] 铌、钽 合金钢、水、地质物料 COL 氢氟酸-硝酸分解样品,色谱分离 铌(钽)-2-[2-(5-溴喹啉)-偶氮]-5-二乙氨基苯酚显色体系,柱前螯合,在线浓缩 [8] 铌 磁性合金 COL 盐酸-硝酸-硫酸分解样品,8%酒石酸溶液提取。pH 2~3,在EDTA存在下,0.1 mol/L三正辛胺萃取Nb分离干扰 Nb-苯基荧光酮显色体系,在510 nm波长测定 [9] 铌、钽 矿石 COL 氢氟酸-盐酸-硝酸-硫酸分解样品 水杨基荧光酮-氯化十六烷基吡啶体系,采用K比例H点标准加入分光光度法,结合Origin7.5软件,有效地克服了光谱重叠干扰问题 [15] 钽 石煤渣 COL 过硫酸钾-氢氧化钠熔融分解样品,流动注射技术-离子交换分离富集 钽-偶氮氟胂-Ⅲ显色体系 [32] 钽 石煤渣 COL 过硫酸钾-氢氧化钠熔融分解样品,巯基棉交换分离富集 钽-Triton X100-丁基罗丹明显色体系 [33] 铌、钽 工业溶液 CE 控制溶液pH=12左右 用无涂层石英毛细管(50 μm×30 cm,有效长度8.5 cm)为分离柱,10 mmol/L氢氧化锂和35 mmol/L乙酸锂为背景电解液,在分离电压16 kV、温度31.0℃最佳条件下分离铌钽。用0.085 mmol/L的1, 5-萘二磺酸盐作内标,在波长211 nm直接测定铌和钽 [38] 铌、钽 稀土金属 ICP-OES 氢氟酸-硝酸分解样品,在氢氟酸存在下沉淀分离稀土元素 铌用309.418 nm作分析谱线,氢氟酸络合铌和钽,加入硼酸保护雾化器 [10] 铌、钽 钨基硬质合金 ICP-OES 硝酸-磷酸分解样品 采取基体匹配和同步背景校正等措施消除高钨基体效应和光谱干扰等影响 [11] 铌、钽 锂辉石 ICP-OES 氢氟酸-硫酸分解样品 样品中加入碘化铵,在425~475℃下灼烧,锡生成碘化锡挥发消除干扰 [13] 铌、钽 稀土铌钽矿 ICP-OES 氢氟酸-硝酸-硫酸冒烟,过硫酸钾熔融分解样品 焦硫酸钾熔融分解酸不溶物 [16] 铌、钽 矿石、矿物 ICP-OES 氢氟酸-盐酸-硝酸微波消解分解样品 51种地质标准物质微波溶样效果进行了评估 [17] 钽 高纯铌及铌化合物 ICP-OES 氢氟酸-硝酸分解样品 少量铌酸沉淀用过氧化氢-草酸溶解,测定波长240.063 nm [18] 钽 铌及铌化合物 ICP-OESICP-MS 氢氟酸-硝酸-硫酸微波消解分解样品,甲基异丁酮溶剂萃取分离Ta 4%(m/V)草酸铵反萃取。铌钽质量比(mNb:mTa)在10~1000000范围内,钽萃取回收率达94%~108% [19] 钽 生物组织 ICP-OES 硝酸-过氧化氢-微波消解或灰化分解样品 肝脏、血液和股骨采用微波消解;尿液用敞开方式消化;肌肉、肝脏和粪便通过干法灰化处理 [21] 铌、钽 土壤和化探 ICP-OES 过氧化钠熔融分解样品 甲基异丁酮-磷酸三丁脂混台溶剂在线萃取,直接测定 [22] 铌、钽 钽铌矿渣 ICP-OES 碳酸钾-硼酸熔融分解样品 基体匹配法消除干扰 [24] 铌、钽 铌钽矿石 ICP-OES 氢氟酸-硝酸-硫酸酸溶及过氧化钠熔融分解样品 比较硝酸-氢氟酸-硫酸和过氧化钠熔融两种样品分解方法后,用过氧化钠熔融,氨性介质,乙二胺四乙酸二钠-草酸-硅酸钠沉淀分离干扰 [27] 铌、钽 岩石 ICP-OESICP-MS 氢氟酸-硫酸酸溶/硫酸氢钾碱熔分解样品。pH=3,活性炭或甲壳素定量吸附铌、钽 活性炭或甲壳素在650℃灰化,氢氟酸-硫酸处理残渣,0.02%柠檬酸介质,铌309.418 nm和钽240.063 nm作分析谱线。除>2 mg的Mn外,其他主要基体元素不干扰测定 [34] 铌、钽 模拟样品 ICP-OES 电热蒸发分解、分离样品 在PTFE存在时,当石墨炉温升至415℃时PTFE发生分解,其分解产物主要为C2F4,C2F4迅速与铌、钽的氧化物反应生成相应的易挥发氟化物,将挥发性氟化物直接引入ICP-OES进行测定 [35] 铌、钽 铌钽矿石 ICP-OES 氢氟酸-硝酸小罐型、多罐体组合的封闭性双层结构消解罐,微波消解分解样品 直接利用耐氢氟酸系统测定 [39] 铌、钽 铌钽矿石 ICP-OES 氢氟酸-硝酸-硫酸分解样品 乙醇浓度为6%时,铌和钽测定信号分别增强180.5%和265.5%,铌、钽的检出限由不加乙醇的5.85 μg/g、10.65 μg/g降低到3.22 μg/g、5.03 μg/g [40] 铌、钽 铌铁 ICP-OES 氢氟酸-硝酸-硫酸分解样品 酒石酸钾钠络合的方法,防止铌钽易水解 [41] 铌 钽金属 ICP-OES 硝酸高压分解样品 通过扫描空白、铌溶液及钽基体溶液的谱图,建立多光谱拟合(MSF)模型,校正高含量钽基体对微量铌的光谱干扰 [42] 铌、钽 铌钽矿石、土壤 ICP-OES 氢氟酸-硫酸分解样品 铌319.498 nm和钽240.063 nm作分析谱线,可避免元素间和共存离子的干扰 [43] 铌、钽 岩石、土壤、水系沉积物 ICP-OES 氢氟酸-硝酸-硫酸分解样品 铌316.324 nm和钽268.517 nm作分析谱线,酒石酸助溶 [44] 铌、钽 地质物料 ICP-MS 氢氟酸-硝酸分解样品,反相高效液相色谱分离 铌(钽)-2-(5-溴-2-吡啶偶氮)-5-(N-丙基-N-磺丙氨)-酚-柠檬酸三元显色体系,柱前螯合。115In作内标校正铌钽元素 [12] 铌、钽 化探 ICP-MS 氢氟酸-硝酸-高氯酸分解样品 181Ta选择185Re作内标,王水介质 [14] 铌、钽 人肺 ICP-MS 过氧化氢-硝酸微波消解分解样品 检出限:0.0005 μg/g铌,0.002 μg/g钽 [20] 铌、钽 岩石 ICP-MS 氢氟酸-硝酸-硫酸/过氧化钠熔融分解样品 比较微波消解酸溶和过氧化钠碱熔两种前处理方法 [25] 铌、钽 化探/稀土矿 ICP-MSICP-OES 氢氟酸-硝酸-硫酸/过氧化钠熔融分解样品 比较硝酸-氢氟酸-硫酸混合酸恒温电热板消解ICP-MS方法测定低含量和过氧化钠高温熔融ICP-OES方法测定高含量两种方法的优势与不足 [26] 铌、钽 岩石 ICP-MS 过氧化钠/偏硼酸锂熔融分解样品 对比过氧化钠熔矿水提取沉淀分离、偏硼酸锂熔融水提取沉淀分离、偏硼酸锂-氢氧化钠熔融水提取沉淀分离的效果 [28] 钽 五氧化二铌 ICP-MS 电热蒸发分解、分离样品 当石墨炉温升至415℃时聚四氟乙烯发生分解,其分解产物主要为12C219F4和12C19F3,它们迅速与钽的氧化物反应生成相应的易挥发氟化物,将挥发性氟化物直接引入ICP-MS进行测定 [36] 铌、钽 岩石 ICP-MS 四硼酸锂熔融分解样品 以29Si为内标,用玻璃标准参考物质NIST SRM612为外标,校正灵敏度漂移、基体效应、激光剥蚀进样量及剥蚀效率的变化,193 nm ArF准分子激光剥蚀进样 [46] 铌、钽 岩石 ICP-MS 偏硼酸锂-四硼酸锂熔融分解样品 以29Si为内标,用玻璃标准参考物质NIST SRM612为外标,低稀释比(样品:熔剂=1:2)熔片,控制激光斑深度与直径的比值小于4,Nd:YAG UV 213nm激光剥蚀进样 [47] 铌、钽 岩石 ICP-MS 激光剥蚀样品 加入180Ta作同位素示踪剂,利用同位素稀释技术测定钽对于单一同位素的铌,采用从基体溶液中定量分离后测定 [48] 铌、钽 海水 ICP-MS N-苯甲酰-N-苯基羟胺色谱柱富集铌钽 1 mol/L盐酸介质,N-苯甲酰-N-苯基羟胺色谱柱吸附铌钽,6 mol/L氢氟酸+1 mol/L盐酸洗脱,2%硝酸介质,ICP-MS测定 [49] 铌、钽 岩石 ICP-MS 氢氟酸-硝酸-高氯酸分解/偏硼酸锂熔融样品,色谱分离 色谱柱填充N-苯甲酰-N-苯基羟胺微孔聚合树脂,保持少量氢氟酸,防止钽水解损失聚四氟乙烯坩埚溶矿,钽空白较高 [50] 铌、钽 岩石 ICP-MS 甘露醇-氢氟酸分解样品 比较焦硫酸钾熔融酒石酸提取、微波消解处理样品、0.015 mol/L氢氟酸-0.12 mol/L硝酸混合酸为测定介质,115In作内标校正93Nb [51] 铌、钽 岩石 ICP-MS 偏硼酸锂-四硼酸锂熔融样品,氢氟酸-盐酸-硝酸-高氯酸溶解玻璃熔片 20%偏硼酸锂-80%四硼酸锂作熔剂,样品:熔剂=1:2熔融分解,四酸溶解熔片,5%硝酸-0.1%氢氟酸为测定介质,115In作内标 [52] 铌、钽 岩石 ICP-MS 偏硼酸锂熔融样品,氢氟酸-硝酸溶解玻璃熔片 偏硼酸锂作熔剂,样品:熔剂=1:10熔融分解,氢氟酸-硝酸溶解熔片,2%硝酸为测定介质,10 ng/mL的115In作内标 [53] 铌、钽 岩石、土壤、水系沉积物 ICP-MS 氢氟酸-高氯酸-硝酸-硫酸分解样品 铌采用高分辨率,钽采用标准分辨率,克服仪器漂移 [54] 铌 镍铬合金 XRF 粉末压片法制样 用二元合金样品求得的校正系数对镍铬合金中元素间的谱线重叠干扰进行校正,理论α系数校正元素间的吸收和增强效应,试验了不同粒度和不同材质砂带研磨样品的影响 [55] 铌 镍基合金 XRF 氢氟酸-盐酸-硝酸分解样品 酸分解制备成待测溶液,配制混合标准溶液做标准曲线,XRF直接测定溶液中的铌 [56] 铌、钽 硬质合金 XRF 四硼酸锂和碳酸锂熔融制片 用五氧化二铌或五氧化二钽经四硼酸锂和碳酸锂熔融制样制备单一氧化物熔融细粉,称取不同质量单一熔融细粉与高纯基体金属氧化物混合后二次熔融合成铌或钽含量不同的人工标准样品 [57] 铌、钽 铌铁 XRF 盐酸-硝酸溶解样品,四硼酸锂熔融制片 采用氢氟酸和硝酸溶解试样的前处理方法,避免熔融过程中铂金坩埚腐蚀的问题。选用铌铁标准物质,向标准物质中添加单元素标准溶液和高纯五氧化二铌的方式合成铌铁校准样品系列,拓宽标准曲线含量范围 [58] 钽 铌钽铁矿 XRF 样品与纤维素(1:1)混合,硼酸镶边,粉末压片法制样 5%~80% Ta2O5的天然铌钽铁矿作标准系列,用LiF420晶体,选择Ta Kα作钽的分析线,克服Nb Kα、Nb Kβ和Ta Lα1、Ta Lβ1的干扰 [59] 铌、钽 岩石、土壤 XRF 粉末压片法制样 高含量铌产生自吸现象,降低管电流、管电压可以消除 [60] 铌、钽 岩石、土壤、水系沉积物 XRF 粉末压片法制样 用标准物质结合人工配制标样制作标准曲线,以经验系数和散射线内标法校正基体效应和元素谱线重叠干扰 [62] 铌、钽 岩石、土壤 XRF 偏硼酸锂-四硼酸锂熔融制片 偏硼酸锂-四硼酸锂(质量比4:1)作熔剂,样品与熔剂比1:5熔融制片,电压40~60 kV,电流70 mA,SUPER Q 3.0建立校正曲线 [63] 铌、钽 岩石 CL 过硫酸钾熔融分解样品,pH 5~6水解沉淀分离 EDTA掩蔽消除干扰元素,流动注射-Kalman滤波化学计量学方法 [23] 铌、钽 模拟样品 CL 在草酸铵介质中,用阳离子交换树脂分离干扰元素 在碱性介质条件下,铌和钽对鲁米诺-过氧化氢-硫氰酸钾化学发光反应产生较强抑制作用,铌和钽对化学发光体系抑制的线性关系 [64] 铌、钽 铌钽铁矿 NAA - 用碳化硼(B4C)作热中子过滤器,铌、钽射线能量分别为871 keV和172 keV,超热中子活化分析法测定 [68] 铌、钽 花岗岩 NAA - 选择γ射线能量为765 keV(铌)、1221 keV(钽),辐照中子通量为7×1011 n/(cm2·s),仪器中子活化分析技术 [69] -
[1] Gunn G.Critical Metals Handbook:15.Tantalum and Niobium[M].USA:American Geophysical Union, 2014:361-382.
[2] 王登红, 王瑞江, 李建康, 等.中国三稀矿产资源战略调查研究进展综述[J].中国地质, 2013, 40(2):361-370. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizi201302002&dbname=CJFD&dbcode=CJFQ
Wang D H, Wang R J, Li J K, et al.The progress in the strategic research and survey of rare earth, rare metal and rare-scattered elements mineral resources[J].Geology in China, 2013, 40(2):361-370. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizi201302002&dbname=CJFD&dbcode=CJFQ
[3] 岩石矿物分析编委会.岩石矿物分析(第四版第三分册)[M].北京:地质出版社, 2011:378-380.
[4] 有色金属工业分析丛书编辑委员会.难熔金属和稀散金属冶金分析[M].北京:冶金工业出版社, 1992:63-133.
The Editorial Committee of Nonferrous Metal Industry Analysis Series.Refractory Metal and Rare Metal Metallurgical Analysis[M].Beijing:Metallurgical Industry Press, 1992:63-133.
[5] Nagiev K D.Spectrophotometric determination of sim-ultaneously present niobium and tantalum[J].Journal of Analytical Chemistry, 2004, 59(10):930-934. doi: 10.1023/B:JANC.0000043907.91045.f0
[6] 童春临, 刘勇胜, 胡圣虹, 等.ICP-MS分析用地质样品制备过程中Nb、Ta等元素的特殊化学行为[J].地球化学, 2009, 38(1):43-52. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqhx200901005&dbname=CJFD&dbcode=CJFQ
Tong C L, Liu Y S, Hu S H, et al.Specific chemical behavior of Nb and Ta in geological sample preparation with PTFE bomb for ICP-MS analysis[J].Geochimica, 2009, 38(1):43-52. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqhx200901005&dbname=CJFD&dbcode=CJFQ
[7] Li D L, Hu X Y, Wang H Z.Separation and simultaneous determination of niobium and tantalum in steel by reversed-phase high-performance liquid chromatography using 2-(2-pyridylazo)-5-diethylamino phenol as a pre-column derivatizing reagent[J].Talanta, 2004, 63(2):233-237. doi: 10.1016/j.talanta.2003.09.028
[8] Li G P, Wei Q Y, Huang Z J, et al.Simultaneous determination of vanadium, niobium and tantalum by high-performance liquid chromatography equipped with on-line enrichment using 2-[2-(5-bromoquinolinylazo)]-5-diethylaminophenol as pre-column derivatization reagent[J].Microchimica Acta, 2007, 158(1-2):95-102. doi: 10.1007/s00604-006-0667-x
[9] Kutyrev I M, Nechepurenko G N, Gaidukova Y A.Ex-traction-spectrophotometric determination of niobium in magnetic alloys[J].Inorganic Materials, 2014, 50(14):1405-1407. doi: 10.1134/S0020168514140088
[10] 崔爱端, 杜梅, 刘晓杰.ICP-AES法测定稀土金属中的钛、钼、钨、铌和钽[J].稀土, 2005, 26(1):57-59. http://d.wanfangdata.com.cn/Periodical_xitu200501015.aspx
Cui A D, Du M, Liu X J.Determing method for titanium, molybdenum, tungsten, niobium and tantalum in rare earth metals[J].Chinese Rare Earths, 2005, 26(1):57-59. http://d.wanfangdata.com.cn/Periodical_xitu200501015.aspx
[11] Cheng Y.Determination of alloy and impurity elements in the WC-Co based cemented carbide by microwave digestion-inductively coupled plasma atomic emission spectrometry[J].Applied Mechanics and Materials, 2012, 271-272:222-226. doi: 10.4028/www.scientific.net/AMM.271-272
[12] Vachirapatama N, Doble P, Haddad P R.Separation and determination of niobium(Ⅴ) and tantalum(Ⅴ) as 2-(5-bromo-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol citrate ternary complexes in geological samples using ion interaction high-performance liquid chromatography[J].Analytica Chimica Acta, 2000, 409(1):35-43. http://www.sciencedirect.com/science/article/pii/S0003267099008156
[13] 刘卫, 栾亚兰, 仵丽萍.电感耦合等离子体光谱法测定锂辉石选矿产品中铌和钽[J].理化检验(化学分册), 2006, 42(9):715-716. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lhjh200609006&dbname=CJFD&dbcode=CJFQ
Liu W, Luan Y L, Wu L P.ICP-AES determination of Nb and Ta in products of oredressing of spodumene[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2006, 42(9):715-716. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lhjh200609006&dbname=CJFD&dbcode=CJFQ
[14] 赵朝辉, 雷勇, 易建春.ICP-MS同时测定地球化学样品中的铌钽[J].矿产综合利用, 2012(6):38-40. http://d.wanfangdata.com.cn/Periodical_kczhly201106011.aspx
Zhao C H, Lei Y, Yi J C.Simultaneous determination of Nb and Ta in geochemical samples by inductively coupled plasma mass spectrometry[J].Multipurpose Utilization of Mineral Resources, 2012(6):38-40. http://d.wanfangdata.com.cn/Periodical_kczhly201106011.aspx
[15] 陶慧林, 朱仕毅, 郑省政.K比例H点标准加入吸光光度法同时测定矿样中铌和钽[J].岩矿测试, 2010, 29(6):699-702. http://www.ykcs.ac.cn/article/id/ykcs_20100616
Tao H L, Zhu S Y, Zheng S Z.Simultaneous determination of niobium and tantalum in ore samples by K-ratio and H-point standard addition spectrophotometry[J].Rock and Mineral Analysis, 2010, 29(6):699-702. http://www.ykcs.ac.cn/article/id/ykcs_20100616
[16] 许涛, 崔爱端, 杜梅, 等.稀土铌钽矿中铌、钽、锆量的电感耦合等离子-原子发射光谱法测定[J].分析科学学报, 2007, 23(3):346-348. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_fxkxxb200703026
Xu T, Cui A D, Du M, et al.Determination of Nb, Ta and Zr in RE-Nb-Ta ore by ICP-AES[J].Journal of Analytical Science, 2007, 23(3):346-348. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_fxkxxb200703026
[17] Lamothe P J, Fries T L, Consul J J.Evaluation of a mic-rowave-oven system for the dissolution of geologic samples[J].Analytical Chemistry, 1986, 58(8):1881-1886. doi: 10.1021/ac00121a060
[18] Smolik M, Turkowska M.Method of low tantalum am-ounts determination in niobium and its compounds by ICP-OES technique[J].Talanta, 2013, 115:184-189. doi: 10.1016/j.talanta.2013.03.065
[19] Turkowska M, Smolik M.Pre-concentration of Ta(Ⅴ) by solvent extraction before determination of trace amounts of Ta in Nb and Nb compounds[J].Analytical Methods, 2016, 8:5304-5310. doi: 10.1039/C6AY01231K
[20] Morton J, Tan E, Suvarna S K.Multi-elemental analysis of human lung samples using inductively coupled plasma mass spectrometry[J].Journal of Trace Elements in Medicine and Biology, 2017, 43:63-71. doi: 10.1016/j.jtemb.2016.11.008
[21] Janell M C, Noel B, Jeannette R, et al.Determination of tantalum from tantalum oxide nanoparticle X-ray/CT contrast agents in rat tissues and bodily fluids by ICP-OES[J].Journal of Analytical Atomic Spectrometry, 2016, 31(6):1311-1317. doi: 10.1039/C5JA00446B
[22] 艾军, 汤志勇.流动注射在线液-液萃取-ICP-AES测定土壤和化探样品中痕量铌和钽[J].光谱学与光谱分析, 2001, 21(5):658-660. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN606.014.htm
Ai J, Tang Z Y.On-line determination of niobium and tantalum in soil and geochemical exploration samples by inductively coupled plasma atomic emission spectrometry with solvent extraction flow injection[J].Spectroscopy and Spectral Analysis, 2001, 21(5):658-660. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN606.014.htm
[23] Wang H X, Li J F, Chen Z X, et al.Fast simultaneous determination of niobium and tantalum by kalman filter analysis with flow injection chemiluminescence[J].Analytical Sciences, 2005, 21(9):1051-1055. doi: 10.2116/analsci.21.1051
[24] 王晓辉, 郑诗礼, 徐红彬, 等.ICP-AES法测定难分解钽铌矿渣中多种金属元素[J].光谱学与光谱分析, 2009, 29(3):805-808. http://d.wanfangdata.com.cn/Periodical_gpxygpfx200903054.aspx
Wang X H, Zheng S L, Xu H B, et al.Analysis of metallic elements in refractory tantalum-niobium slag by ICP-AES[J].Spectroscopy and Spectral Analysis, 2009, 29(3):805-808. http://d.wanfangdata.com.cn/Periodical_gpxygpfx200903054.aspx
[25] 时晓露, 刘洪青, 孙月婷, 等.电感耦合等离子体质谱法测定岩石样品中的锆铌铪钽两种预处理方法的比较[J].岩矿测试, 2009, 28(5):427-430. http://www.ykcs.ac.cn/article/id/ykcs_20090506
Shi X L, Liu H Q, Sun Y T, et al.Comparison of two different sample pretreatment methods in determination of Zr, Nb, Hf, Ta in rocks by inductively coupled plasma mass spectrometry[J].Rock and Mineral Analysis, 2009, 28(5):427-430. http://www.ykcs.ac.cn/article/id/ykcs_20090506
[26] 高会艳.ICP-MS和ICP-AES测定地球化学勘查样品及稀土矿石中铌钽方法体系的建立[J].岩矿测试, 2014, 33(3):312-320. http://www.ykcs.ac.cn/article/id/ba9800ad-b710-4e6e-889a-ca64ab436357
Gao H Y.Determination systems of Nb and Ta in geo-chemical samples and rare earth ores by ICP-MS and ICP-AES[J].Rock and Mineral Analysis, 2014, 33(3):312-320. http://www.ykcs.ac.cn/article/id/ba9800ad-b710-4e6e-889a-ca64ab436357
[27] 张军, 陈慧连, 曾宇斌.两种铌钽矿石消解方法的对比研究[J].广州化工, 2014, 42(10):120-122. doi: 10.3969/j.issn.1001-9677.2014.10.044
Zhang J, Chen H L, Zeng Y B.A comparative study of two kinds of niobium tantalum ore digestion method[J].Guangzhou Chemical Industry, 2014, 42(10):120-122. doi: 10.3969/j.issn.1001-9677.2014.10.044
[28] 王蕾, 何红蓼, 李冰.碱熔沉淀-等离子体质谱法测定地质样品中的多元素[J].岩矿测试, 2003, 22(2):86-92. http://www.ykcs.ac.cn/article/id/ykcs_20030225
Wang L, He H L, Li B.Multi-element determination in geological samples by inductively coupled plasma mass spectrometry after fusion-precipitation treatment[J].Rock and Mineral Analysis, 2003, 22(2):86-92. http://www.ykcs.ac.cn/article/id/ykcs_20030225
[29] Motlalepula N, Walter P, Johann T N.Hydrometallurgical separation of niobium and tantalum:A fundamental approach[J].JOM, 2016, 68(2):556-566. doi: 10.1007/s11837-015-1711-2
[30] 杨秀丽, 王晓辉, 孙青, 等.低浓度氢氟酸体系中MIBK萃取分离钽铌的研究[J].有色金属(冶炼部分), 2012(11):26-29. doi: 10.3969/j.issn.1007-7545.2012.11.008
Yang X L, Wang X H, Sun Q, et al.Study on separation of tantalum and niobium by extraction with MIBK from low hydrofluoric acid concentration system[J].Nonferrous Metals (Extractive Metallurgy), 2012(11):26-29. doi: 10.3969/j.issn.1007-7545.2012.11.008
[31] Makanyire T, Sanchez-Segado S, Jha A.Separation and recovery of critical metal ions using ionic liquids[J].Advances in Manufacturing, 2016, 4(1):33-46. doi: 10.1007/s40436-015-0132-3
[32] 罗道成, 宁立波.流动注射-离子交换分离富集-分光光度法测定石煤渣中痕量钽[J].化学试剂, 2005, 27(9):556-558. http://d.wanfangdata.com.cn/Periodical_huaxsj200509013.aspx
Luo D C, Ning L B.Determination of trace tantalum in stone coal slag with flow injection-ion exchange separation and preconcentration-spectrophotometry[J].Chemical Reagents, 2005, 27(9):556-558. http://d.wanfangdata.com.cn/Periodical_huaxsj200509013.aspx
[33] 罗道成, 刘俊峰.巯基棉富集分光光度法测定石煤渣中痕量钽[J].冶金分析, 2010, 30(8):54-57. https://www.wenkuxiazai.com/doc/279eed1a0740be1e650e9abd.html
Luo D C, Liu J F.Spectrophotometric determination of trace tantalum in stone coal slag after enrichment with sulfhydryl cotton[J].Metallurgical Analysis, 2010, 30(8):54-57. https://www.wenkuxiazai.com/doc/279eed1a0740be1e650e9abd.html
[34] Padmasubashini V, Murty D S R.Determination of ni-obium and tantalum in geological samples by ICP-AES after preconcentration by solid phase extraction on activated carbon or chitin[J].Atomic Spectroscopy, 2011, 32(1):17-26. https://www.researchgate.net/profile/G_Hall/citations?sorting=recent&page=2
[35] 胡斌, 江祖成, 曾云鹗.难熔元素铌钽铀锆在电热蒸发-等离子体发射光谱中氟化蒸发行为研究[J].岩矿测试, 1993, 12(3):183-188. http://www.ykcs.ac.cn/article/id/ykcs_19930362
Hu B, Jiang Z C, Zeng Y H.Vaporization behavior of niobium, tantalum, uranium and zirconium in graphite furnace ETV-ICP-AES using polytetrafluoroethylene as fluorinating agent[J].Rock and Mineral Analysis, 1993, 12(3):183-188. http://www.ykcs.ac.cn/article/id/ykcs_19930362
[36] Li S Q, Hu B, Jiang Z C.Direct determination of trace impurities in niobium pentaoxide solid powder with slurry sampling fluorination assisted electrothermal vaporization inductively coupled plasma mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2004, 19(3):387-391. doi: 10.1039/b307780m
[37] Gazieva M T, Pometun E A, Pachadzhanov D N.Deter-mination of niobium, tantalum, zirconium, and hafnium by atomic emission spectrometry using directed thermochemical reactions[J].Journal of Analytical Chemistry, 2006, 61(3):250-252. doi: 10.1134/S1061934806030099
[38] Deblonde G J, Chagnes A, Cote G, et al.Development of a capillary electrophoresis method for the analysis in alkaline media as polyoxoanions of two strategic metals:Niobium and tantalum[J].Journal of Chromatography A, 2016, 1437:210-218. doi: 10.1016/j.chroma.2016.01.075
[39] 马生凤, 温宏利, 李冰, 等.微波消解-耐氢氟酸系统电感耦合等离子体发射光谱法测定铌钽矿中的铌和钽[J].岩矿测试, 2016, 35(3):49-53. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.03.009
Ma S F, Wen H L, Li B, et al.Determination of Nb and Ta in Nb-Ta ore by inductively coupled plasma-optical emission spectrometry with a combined microwave digestion hydrofluoric acid-resistant system[J].Rock and Mineral Analysis, 2016, 35(3):49-53. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.03.009
[40] 姚玉玲, 吴丽琨, 刘卫, 等.乙醇增敏-电感耦合等离子体发射光谱法测定矿石及选冶样品中的铌钽[J].岩矿测试, 2015, 34(2):224-228. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.02.012
Yao Y L, Wu L K, Liu W, et al.Determination of Nb and Ta in ores and metallurgical samples by inductively coupled plasma-atomic emission spectrometry with ethanol as a sensitizer[J].Rock and Mineral Analysis, 2015, 34(2):224-228. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.02.012
[41] 李韶梅, 王国增, 赵军, 等.电感耦合等离子体原子发射光谱法测定铌铁中铌和钽[J].冶金分析, 2012, 32(3):48-50. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_yjfx201203010
Li S M, Wang G Z, Zhao J, et al.Determination of niobium and tantalum in ferroniobium by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2012, 32(3):48-50. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_yjfx201203010
[42] 徐娟, 郑诗礼, 郭奋, 等.电感耦合等离子体原子发射光谱法测定钽中微量铌的多元光谱拟合干扰校正方法研究[J].冶金分析, 2010, 30(8):1-6. https://core.ac.uk/display/48899352
Xu J, Zheng S L, Guo F, et al.Research on the multicomponent spectral-fitting interference correction for the determination of micro niobium in tantalum by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2010, 30(8):1-6. https://core.ac.uk/display/48899352
[43] Saran R, Khorge C R, Premadas A, et al.ICP-OES determination of niobium, tantalum, and titanium at trace to percentage levels in varying geological matrices[J].Atomic Spectroscopy, 2004, 25(5):226-231. https://www.researchgate.net/publication/289010503_Estimation_of_niobium_tantalum_and_zirconium_in_a_carbonate_rich_ore
[44] 潘钢, 易建春.恒温电热板湿法消解-ICP-AES对地质样品中铌和钽的连续测定[J].光谱实验室, 2012, 29(3):1597-1600. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gpss201203072&dbname=CJFD&dbcode=CJFQ
Pan G, Yi J C.Continuos determination of niobium and tantalum in geological samples by ICP-AES with constant temperature electric heating plate wet digestion[J].Chinese Journal of Spectroscopy Laboratory, 2012, 29(3):1597-1600. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gpss201203072&dbname=CJFD&dbcode=CJFQ
[45] 邹阳, 杨远, 罗悠, 等.电感耦合等离子体原子发射光谱(ICP-AES)法测定锂云母中的锂、钽、铌等7种元素[J].中国无机分析化学, 2016, 6(1):41-44. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wjfx201601011&dbname=CJFD&dbcode=CJFQ
Zou Y, Yang Y, Luo Y, et al.Determination of seven elements (lithium, tantalum, niobium et al.) in lepidolite by inductively coupled plasma emission spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1):41-44. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wjfx201601011&dbname=CJFD&dbcode=CJFQ
[46] 第五春荣, 柳小明, 袁洪林, 等.193nm ArF准分子激光剥蚀等离子体质谱法测定熔融玻璃中微量铌和钽[J].岩矿测试, 2007, 26(1):1-3. http://www.ykcs.ac.cn/article/id/ykcs_20070105
Diwu C R, Liu X M, Yuan H L, et al.Determination of micro-amount of niobium and tantalum in fused glass samples by argon fluoride 193nm excimer laser ablation-inductively coupled plasma mass spectrometry[J].Rock and Mineral Analysis, 2007, 26(1):1-3. http://www.ykcs.ac.cn/article/id/ykcs_20070105
[47] Park C S, Shin H S, Oh H, et al.Trace element analysis of whole-rock glass beads of geological reference materials by Nd:YAG UV 213 nm LA-ICP-MS[J].Journal of Analytical Science and Technology, 2016, 7:15. doi: 10.1186/s40543-016-0094-5
[48] Weyer S, Münker C, Rehkämper M.Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS[J].Chemical Geology, 2002, 187(3):295-313. https://www.sciencedirect.com/science/article/pii/S0009254102001298
[49] Sun S L, Li J.Determination of Zr, Nb, Mo, Sn, Hf, Ta, and W in seawater by N-benzoyl-N-phenylhydroxylamine extraction chromatographic resin and inductively coupled plasma-mass spectrometry[J].Microchemical Journal, 2015, 119:102-107. doi: 10.1016/j.microc.2014.11.006
[50] Yang X J, Pin C.Determination of niobium, tantalum, zirconium and hafnium in geological materials by extraction chromatography and inductively coupled plasma mass spectrometry[J].Analytica Chimica Acta, 2002, 458(2):375-386. doi: 10.1016/S0003-2670(02)00076-4
[51] Nagaishi K, Ishikawa T.A simple method for the precise determination of boron, zirconium, niobium, hafnium and tantalum using ICP-MS and new results for rock reference samples[J].Geochemical Journal, 2009, 43(2):133-141. doi: 10.2343/geochemj.1.0010
[52] Kamei A.Determination of trace element abundances in GSJ reference rock samples using lithium metaborate-lithium tetraborate fused solutions and inductively coupled plasma mass spectrometry[J].Geoscience Reports of Shimane University, 2016, 34:41-49. https://www.researchgate.net/publication/230240009_A_Simple_Method_for_Precise_Determination_of_23_Trace_Elements_in_Granitic_Rocks_by_ICP-MS_after_Lithium_Tetraborate_Fusion
[53] Amosova A A, Panteeva S V, Chubarov V M, et al.Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110 mg)[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2016, 122:62-68. doi: 10.1016/j.sab.2016.06.001
[54] 吴赫, 淮鑫斌, 韩张雄, 等.电感耦合等离子体质谱法测定地球化学样品中的铌和钽[J].光谱实验室, 2013, 30(5):2452-2456. http://www.doc88.com/p-9713193468207.html
Wu H, Huai X B, Han Z X, et al.Determination of niobium and tantalum in geological samples by inductively coupled plasma mass spectrometry[J].Chinese Journal of Spectroscopy Laboratory, 2013, 30(5):2452-2456. http://www.doc88.com/p-9713193468207.html
[55] 陆晓明, 金德龙, 胡莹.X射线荧光光谱法测定镍铬合金中15种元素[J].冶金分析, 2013, 33(10):49-55. http://www.mat-test.com/abstract.htm?aid=OJ151107002361MiPlRo
Lu X M, Jin D L, Hu Y.Determination of fifteen elements in nickel-chromium alloy by X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2013, 33(10):49-55. http://www.mat-test.com/abstract.htm?aid=OJ151107002361MiPlRo
[56] 安身平, 王树安, 廖志海, 等.X射线荧光光谱法测定镍基合金中镍、铬、钼、铌含量[J].理化检验(化学分册), 2009, 45(11):1339-1340. http://mall.cnki.net/magazine/Article/LHJH200911036.htm
An S P, Wang S A, Liao Z H, et al.Determination of nickel, chromium, molybdenum, niobium in the nickel base alloy by X-ray fluorescence spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2009, 45(11):1339-1340. http://mall.cnki.net/magazine/Article/LHJH200911036.htm
[57] 彭慧仙.熔融制样-X射线荧光光谱法测定硬质合金中钨钴镍铁铌钽铬[J].冶金分析, 2015, 35(7):20-26. https://wuxizazhi.cnki.net/qikan-HXFJ200004009.html
Peng H X.Determination of tungsten, cobalt, nickel, iron, niobium, tantalum and chromium in hard alloy X-ray fluorescence spectrometry with fusion samples preparation[J].Metallurgical Analysis, 2015, 35(7):20-26. https://wuxizazhi.cnki.net/qikan-HXFJ200004009.html
[58] 邵常丽.X射线荧光光谱法测定铌铁中铌钽铜钛铝磷[J].冶金分析, 2017, 37(6):50-54. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yjfx201706009&dbname=CJFD&dbcode=CJFQ
Shao C L.Determination of niobium, tantalum, copper, titanium, aluminum and phosphorus in ferro-niobium by X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2017, 37(6):50-54. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yjfx201706009&dbname=CJFD&dbcode=CJFQ
[59] Viswanathan S, Anjan C, Yamuna S.Wavelength-disper-sive X-ray fluorescence spectrometric determination of tantalum in columbite-tantalite using Ta Kα and an LiF 420 analysing crystal[J].Journal Geological Society of India, 2010, 76(2):171-174. doi: 10.1007/s12594-010-0091-z
[60] 陈静.X射线荧光光谱法测定地质样品中铌和钽的探讨[J].冶金分析, 2015, 35(10):24-29. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_yjfx201510005
Chen J.Discussion on the determination ofniobium and tantalum in geological samples by X-ray fluorescence spectrometry[J].Metallurgical Analysis, 2015, 35(10):24-29. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_yjfx201510005
[61] 吉昂.X射线荧光光谱三十年[J].岩矿测试, 2012, 31(3):383-398. http://www.ykcs.ac.cn/article/id/ykcs_20120302
Ji A.Development of X-ray fluorescence spectrometry in the 30 years[J].Rock and Mineral Analysis, 2012, 31(3):383-398. http://www.ykcs.ac.cn/article/id/ykcs_20120302
[62] 刘江斌, 赵峰, 余宇, 等.X射线荧光光谱法同时测定地质样品中铌钽锆铪铈镓钪铀等稀有元素[J].岩矿测试, 2010, 29(1):74-76. http://www.ykcs.ac.cn/article/id/ykcs_20100117
Liu J B, Zhao F, Yu Y, et al.Simultaneous determination of Nb, Ta, Zr, Hf, Ce, Ga, Sc and U in geological samples by X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2010, 29(1):74-76. http://www.ykcs.ac.cn/article/id/ykcs_20100117
[63] Krishna A K, Khanna T C, Mohan K R.Rapid quan-titative determination of major and trace elements in silicate rocks and soils employing fused glass discs using wavelength dispersive X-ray fluorescence spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2016, 122:165-171. doi: 10.1016/j.sab.2016.07.004
[64] 刘丽莉, 王洪艳, 李俊峰.流动注射化学发光法测定复杂物料中的铌和钽[J].现代科学仪器, 2002(1):48-50. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xdyq200201013&dbname=CJFD&dbcode=CJFQ
Liu L L, Wang H Y, Li J F.Determination of niobium and tantalum in complex samples by flow injection chemiluminescence method[J].Modern Scientific Instruments, 2002(1):48-50. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xdyq200201013&dbname=CJFD&dbcode=CJFQ
[65] Klos A, Aleksiayenak Y A, Ziembik Z, et al.The use of neutron activation analysis in the biomonitoring of trace element deposition in the opole province[J].Ecological Chemistry and Engineering S, 2013, 20(4):677-678. https://www.researchgate.net/profile/Andrzej_Ktos/publication/275994805_The_use_of_neutron_activation_analysis_in_the_biomonitoring_of_trace_element_deposition_in_the_opole_province/links/5551c35c08ae93634eca22f3.pdf?origin=publication_detail
[66] Hunt A M W, Dvoracek D, Glascock M D, et al.Major, minor and trace element mass fractions determined using ED-XRF, WD-XRF and INAA for three synthetic mullite reference materials (NCS HC 14807; NCS HC 14808; and NCS HC 14809) and five stream sediment reference materials(GBW07302; GBW07310; GBW07311; GBW07312; and GBW07405)[J].Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(1):1005-1007. doi: 10.1007/s10967-014-3387-4
[67] Alharbi W R, El-Taher A. Elemental analysis and natural radioactivity levels of clay by gamma ray spectrometer and instrumental neutron activation analysis[J]. Science and Technology of Nuclear Installations, 2016, ID8726260: 1-5.
https: //www. hindawi. com/journals/stni/2016/8726260/ [68] Dampare S B, Nyarko B J B, Osae S, et al.Simultaneous determination of tantalum, niobium, thorium and uranium in placer columbite-tantalite deposits from the Akim Oda District of Ghana by epithermal instrumental neutron activation analysis[J].Journal of Radioanalytical and Nuclear Chemistry, 2005, 265(1):53-59. doi: 10.1007/s10967-005-0860-0
[69] El-Taher A.Elemental analysis of granite by instrumental neutron activation analysis(INAA) and X-ray fluorescence analysis(XRF)[J].Applied Radiation Isotope, 2012, 70(1):350-354. doi: 10.1016/j.apradiso.2011.09.008
-