Determination of Germanium and Tellurium in Geological Samples by A Self-developed Hydride Generation Device Paired with Inductively Coupled Plasma-Mass Spectrometer
-
摘要: 氢化物发生与ICP-MS联用(HG-ICP-MS)可降低基体效应和多原子离子干扰,本文自制了一种与ICP-MS联用的氢化物发生装置,该装置采用三通将酸、碱和试样引入多接头的混合反应器中,再经自行设计的气液分离器随载气进入等离子体中,据此建立了HG-ICP-MS测定地质样品中稀散元素锗和碲的分析方法。实验中以20%盐酸+2%硼氢化钾(0.1%氢氧化钾介质)作为最佳氢化物发生反应体系,0.95 L/min为最佳载气流量,获得分析信号的灵敏度和稳定性较高,连续测定20次Ge和Te信号强度的相对标准偏差分别为8.3%和2.1%,残余在ICP-MS中的Ge和Te信号强度在200 s内基本清洗完毕。Ge和Te检出限分别为0.007 μg/g和0.006 μg/g,其中Te检出限比采用敞口四酸溶样ICP-MS直接测定的检出限(0.1 μg/g)更低,应用于分析实际样品可给出准确结果。Abstract: Hydride generation paired with Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) can reduce the matrix effect and interference of polyatomic ions. In this study, one self-made hydride generation device coupled with ICP-MS was developed for the determination of scattered elements, Ge and Te, in geological samples. A Y-shaped connection pipe is used to introduce acid, alkali and the sample into a multiple-joint reactor. After the reaction is complete, the mixture of liquid and gas is separated by self-designed gas-liquid separator. Finally, the gaseous hydrides along with the carrier gas enter the plasma. In this experiment, 20% HCl and 2% KBH4 (0.1% KOH medium) were used as the hydride generation reaction system and the carrier gas flow rate was set to 0.95 L/min to keep high sensitivity and stability. The relative standard deviations of Ge and Te signal intensity for 20 times continuous determination are 8.3% and 2.1%, respectively. The residual Ge and Te in ICP-MS can be cleaned up within 200 s. The detection limits of this method are 0.007 μg/g and 0.006 μg/g for Ge and Te, respectively. Moreover, the detection limit of Te for this method is lower than that of Te (0.1 μg/g) determined by ICP-MS directly after four-acid digestion. Therefore, this method can be used to gain accurate results for Ge and Te contents in geological samples.
-
-
表 1 岩石标准物质的测定结果和方法比对
Table 1. Analytical results of Ge and Te in rock reference materials and comparison of the different methods
标准物质编号 Ge Te 实际样品编号 Ge Te 推荐值(μg/g) 本方法测定值(μg/g) RSD(%)(n=5) 推荐值(μg/g) 本方法测定值(μg/g) RSD(%)(n=5) 本方法测定值(μg/g) 发射光谱测定值(μg/g) 本方法测定值(μg/g) ICP-MS直接测定值(μg/g) GBW07103 2 2.24 4.7 0.021 0.028 5.8 样品1 1.18 1.25 0.015 <0.1 GBW07105 0.93 1.04 5.8 0.017 0.015 4.1 样品2 1.10 1.02 0.018 <0.1 GBW07107 1.16 1.43 3.9 0.056 0.038 6.8 样品3 0.75 0.67 0.013 <0.1 GBW07108 3.1 3.10 3.8 0.038 0.056 3.3 样品4 1.72 1.70 0.025 <0.1 GBW07109 0.67 0.72 4.5 0.022 0.027 4.6 样品5 1.38 1.40 0.016 <0.1 -
[1] 赵峰,李瑞仙,祝建国,等.氢化物发生-原子荧光光度法直接测定环境土壤中的痕量锗[J].分析测试技术与仪器,2011,17(1):56-58.
Zhao F,Li R X,Zhu J G,et al.Direct Determination of Trace Germanium in Environment Soil by Atomic Fluorescence Spectrometry[J].Analysis and Testing Technology and Instruments,2011,17(1):56-58.
[2] 何贵,常继秀,周晓润,等.仪器残留物对氢化物发生-原子荧光光谱法测定硒和碲的影响探讨[J].岩矿测试,2013,32(2):229-234.
He G,Chang J X,Zhou X R,et al.Discussion on Influence of Residues in Instruments on Detection of Selenium and Tellurium by Hydride Generation-Atomic Fluorescence Spectrometry[J].Rock and Mineral Analysis,2013,32(2):229-234.
[3] 张利群,王晓辉,宋晓春,等.电感耦合等离子体原子发射光谱法测定锑精矿中铅硒碲铊[J].冶金分析,2012,32(4):50-53.
Zhang L Q,Wang X H,Song X C,et al.Determination of Plumbum,Selenium,Tellurium,Thallium in Antimony Concentrates by Inductively Coupled Plasma[J].Metallurgical Analysis,2012,32(4):50-53.
[4] Thangavel S,Dash K,Dhavile S M,et al.Determination of Traces of As,B,Bi,Ga,Ge,P,Pb,Sb,Se,Si and Te in High-purity Nickel Using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES)[J].Talanta,2015,131:505-509.
[5] Chen Y L,Jiang S J.Determination of Tellurium in a Nichel-based Alloy by Flow Injection Vapor Generation Inductively Coupled Plasma Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry,2000,15:1578-1582.
[6] 李国榕,王亚平,孙元方,等.电感耦合等离子体质谱法测定地质样品中稀散元素铬镓铟碲铊[J].岩矿测试,2010,29(3):255-258.
Li G R,Wang Y P,Sun Y F,et al.Determination of Cr,Ga,In,Te and Tl in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry[J].Rock and Mineral Analysis,2010,29(3):255-258.
[7] 陈波,刘洪青,邢应香.电感耦合等离子体质谱法同时测定地质样品中锗硒碲[J].岩矿测试,2014,33(2):192-196.
Chen B,Liu H Q,Xing Y X.Simultaneous Determination of Ge,Se and Te in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry[J].Rock and Mineral Analysis,2014,33(2):192-196.
[8] 黎卫亮,程秀花,张明祖,等.乙醇增强电感耦合等离子体质谱法测定地质样品中镓铟铊锗碲[J].冶金分析,2014,34(3):13-18.
Li W L,Cheng X H,Zhang M Z,et al.Determination of Gallium,Indium,Thallium,Germanium and Tellurium in Geological Samples by Inductively Coupled Plasma Mass Spectrometry with Ethanol as a Signal Enhancer[J].Metallurgical Analysis,2014,34(3):13-18.
[9] 郑大中,郑若锋,王惠萍.氢化物发生及其在分析检测领域的应用[J].岩矿测试,2008,27(1):55-59.
Zheng D J,Zheng R F,Wang H P.Hydride Generation and Its Application in Analysis and Detection Field[J].Rock and Mineral Analysis,2008,27(1):55-59.
[10] Rie R R,Rikke V H,Erik H L,et al.Development and Validation of an SPE HG-AAS Method for Determination of Inorganic Arsenic in Samples of Marine Origin[J].Analytical and Bioanalytical Chemistry,2012,403(10):2825-2834.
[11] 胡存杰.氢化物发生-原子吸收光谱法测定土壤中铅[J].冶金分析,2013,33(9):61-64.
Hu C J.Determination of Lead in Soil by Hydride Generation-Atomic Absorption Spectrometry[J].Metallurgical Analysis,2013,33(9):61-64.
[12] Tyburska A,Jankowski K,Ramsza A,et al.Feasibility Study of the Determination of Selenium,Antimony and Arsenic in Drinking and Mineral Water by ICP-OES Using a Dual-flow Ultrasonic Nebulizer and Direct Hydride Generation[J].Journal of Analytical Atomic Spectrometry,2010,25(2):210-214.
[13] 吴峥,熊英,王龙山.自制氢化物发生系统与电感耦合等离子体发射光谱法联用测定土壤和水系沉积物中的砷锑铋[J].岩矿测试,2015,34(5):533-538.
Wu Z,Xiong Y,Wang L S.Determination of As,Sb and Bi in Soil and Stream Sediment by a Self-developed Hydride Generation System Coupled with Inductively Coupled Plasma-Optical Emission Spectrometry[J].Rock and Mineral Analysis,2015,34(5):533-538.
[14] 李冰,王小如.乙醇增强氢化物发生电感耦合等离子体质谱法测定砷锑铋硒和碲的研究[J].岩矿测试,1999,18(2):101-110.
Li B,Wang X R.Determination of Arsenic,Antimony,Bismuth,Selenium and Tellurium by Hydride Generation Inductively Coupled Plasma Mass Spectrometry Using Ethanol as a Signal Enhancer[J].Rock and Mineral Analysis,1999,18(2):101-110.
[15] 刘湘生,刘刚,高志祥,等.氢化物发生-电感耦合等离子体质谱联用技术研究[J].分析化学,2003,31(8):1016-1020.
Liu X S,Liu G,Gao Z X,et al.Hydride Generation System Combined with Inductively Coupled Plasma Mass Spectrometry[J].Chinese Journal of Analytical Chemistry,2003,31(8):1016-1020.
[16] 郑永章,伍星,刘湘生.氢化物发生-ICP-MS联用技术的研究与应用[J].现代仪器,2002(1):15-17.
Zheng Y Z,Wu X,Liu X S.Study and Application of Coupling Technique of Hydride Generation with ICP-MS Determination[J].Modern Instruments,2002(1):15-17.
[17] 董亚妮,田萍,熊英,等.氢化物发生-原子荧光光谱法测定铜铅锌矿石中的微量锗[J].岩矿测试,2010,29(4):395-398.
Dong Y N,Tian P,Xiong Y,et al.Determination of Trace Germanium in Copper,Lead and Zinc Ores by Hydride Generation-Atomic Fluorescence Spectrometry[J].Rock and Mineral Analysis,2010,29(4):395-398.
-