Determination of Volatile and Nonvolatile Trace Elements in Geochemical Samples by Fluoride Solid Buffer-AC Arc Direct Reading Emission Spectrometry
-
摘要: 应用电弧直读发射光谱法测定化探样品,样品无需消解,采用固体进样的方式可以同时测定多个元素。但目前化探分析中常采用的固体缓冲剂(如焦硫酸钾、氟化钠)的电弧温度较低,只能分析银、硼、锡、铅、钼、铜等易挥发元素,而不能分析铬、锰、钛等沸点较高的难挥发性元素。本文通过碱金属控制较低的电弧温度,并利用难挥发元素能在高温条件下与氟离子发生化学反应降低其激发温度,配制了一种以氟化铝、聚三氟氯乙烯等氟化效率较高的化合物为主要成分的固体缓冲剂,通过优化分析线对的选择、曝光时间、电极形状等分析条件,实现了一次制样可同时分析地球化学样品中14种易挥发和难挥发元素。方法检出限为0.016~46.93 μg/g,相对标准偏差为4.1%~12.3%,通过国家标准物质验证了准确度,测定值与标准值相符,各项参数都能满足地球化学普查规范要求。本方法分析效率高,在化探分析中具有一定的实用性。Abstract: It is not necessary to digest a sample if it is determined by Arc Direct Reading Emission Spectrometry, and multiple elements can be simultaneously determined by solid injection. Currently used geochemical solid buffers, such as potassium persulfate and sodium fluoride have a low temperature arc flame, and can only analyze silver, boron, tin, molybdenum, lead, copper and other volatile elements but cannot analyze chromium, manganese, titanium and other high boiling point elements. Alkali metal was used to control the low arc temperature, and a solid buffer composed of aluminum fluoride, PCTFE and other high efficiency fluorination compounds was prepared based on the fact that the reaction between difficult volatile elements and fluorine ion under high temperature would have lower excitation energy. By optimizing the choice of line pairs, exposure time, electrode shape and other analysis conditions, 14 volatile and non-volatile elements in the geochemical samples can be simultaneously analyzed. The detection limit of the method ranges from 0.016 to 46.93 μg/g, and the relative standard deviation is 4.1% to 12.3%. The accuracy was verified by national standard material. The results were in accordance with the standard values, and the parameters meet the requirements of geochemical census. The method has high analysis efficiency and is practical in geochemical analysis.
-
-
表 1 线性方程和方法检出限
Table 1. Linear equation and the detection limits of elements
元素 分析线
(nm)内标线
(nm)线性方程 相关系数
(R2)检出限
(μg/g)1:5万规范要求
(μg/g)Ag 328.0683 Ge (326.94) y=0.01991x+2.6824 0.9980 0.016 0.03 B 249.7733 Pd (311.40) y=0.01465x-0.87846 0.9869 0.57 5 Sn 283.9989 Ge (270.96) y=41.84187x-59.60691 0.9981 0.67 1 Cu 282.4281 Ge (270.96) y=45.70798x-141.53336 0.9981 27.23 1.5 327.4047 Ge (270.96) y=37.0919x-11.0803 0.9931 1.02 - Pb 283.3160 Pd (311.40) y=49.90404x-125.23204 0.9985 1.12 5 266.3160 Pd (311.40) y=38.8363x-61.44835 0.9988 12.65 - Zn 328.2422 Pd (325.88) y=40.3932x-113.90369 0.9893 9.12 15 Mo 313.2318 Pd (311.40) y=39.90176x-22.15677 0.9943 0.13 0.5 Co 324.351 Ge (270.96) y=45.24665x-117.73741 0.9962 0.81 1 Ni 305.0748 Pd (311.40) y=34.75742x-38.14033 0.9846 1.09 3 Ga 294.3800 Ge (270.96) y=48.51972x-146.11944 0.9889 0.39 - Cr 297.110 Pd (325.88) y=0.7352x+0.7152 0.9930 8.37 15 Mn 304.4300 Pd (325.88) y=1.0439x-0.5983 0.9961 17.65 30 Ti 318.6168 Pd (325.88) y=0.9747x-0.3757 0.9861 46.93 100 V 319.801 Pd (325.88) y=0.9356x+1.6726 0.9970 8.91 20 表 2 方法准确度和精密度
Table 2. Accuracy and precision tests of the method
元素 GBW07317 GBW07307a GBW07401 标准值
(μg/g)测定值
(μg/g)相对误差
(%)RSD
(%)标准值
(μg/g)测定值
(μg/g)相对误差
(%)RSD
(%)标准值
(μg/g)测定值
(μg/g)相对误差
(%)RSD
(%)Ag 0.027 0.026 3.7 9.6 1.25 1.32 -5.6 4.5 0.35 0.36 -2.9 6.0 B 5.30 5.84 -10.2 11.2 195 182 6.7 4.6 50 51 -2.0 5.0 Sn 0.97 0.92 5.2 5.3 2.5 2.6 -4.0 7.8 6.1 6.5 -6.6 5.0 Cu 11 12 -9.1 9.7 22.5 24.1 -7.1 7.7 21 25 -19.0 6.5 Pb 13 13 0.0 6.1 555 576 -3.8 5.4 98 91 7.1 5.7 Zn 16 19 -18.8 12.3 780 758 2.8 9.7 680 704 -3.5 6.4 Mo 0.500 0.392 21.6 9.2 0.82 0.97 -18.3 6.3 1.4 1.3 7.1 4.3 Co 3.60 3.75 -4.2 6.6 15.2 14.5 4.6 8.8 14.2 16.3 -14.8 8.5 Ni 3.00 2.86 4.7 5.9 22 20 9.1 8.1 20.4 18.5 9.3 8.7 Ga 11.2 10.4 7.1 8.0 14.4 16.5 -14.6 5.5 19.3 16.9 12.4 8.7 Cr 12.0 13.5 -12.5 8.0 43 42 2.3 5.4 62 60 3.2 9.2 Mn 218 241 -10.6 6.9 886 991 -11.9 8.7 1760 1700 3.4 4.3 Ti 1370 1299 5.2 6.3 4100 4612 -12.5 7.4 4830 5300 -9.7 5.4 V 20 23 -15.0 6.2 77 81 -5.2 4.1 86 78 9.3 6.2 元素 GBW07408 GBW07103 GBW07104 标准值
(μg/g)测定值
(μg/g)相对误差
(%)RSD
(%)标准值
(μg/g)测定值
(μg/g)相对误差
(%)RSD
(%)标准值
(μg/g)测定值
(μg/g)相对误差
(%)RSD
(%)Ag 0.06 0.067 -11.7 9.4 0.033 0.031 6.1 9.3 0.072 0.075 -4.2 6.3 B 54 56 -3.7 6.8 24 22 8.3 5.1 4.7 5.5 -17.0 9.3 Sn 2.8 3.0 -7.1 4.5 12.5 12.0 4.0 7.0 0.79 0.87 -10.1 9.8 Cu 24.3 22.63 6.9 8.5 3.2 4.0 -25.0 10.6 55 60 -9.1 9.0 Pb 21 21 0.0 9.3 31 28 9.7 8.5 11.3 10.1 10.6 9.8 Zn 68 75 -10.3 8.6 167 183 -9.6 9.4 99 88 11.1 8.0 Mo 1.16 1.22 -5.2 5.9 3.5 3.2 8.6 8.6 0.54 0.46 14.8 8.7 Co 12.7 13.7 -7.9 5.3 3.4 3.0 11.8 9.0 13.2 11.9 9.8 8.8 Ni 31.5 36.6 -16.2 9.2 2.3 2.6 -13.0 9.3 17 16 5.9 7.7 Ga 14.8 13.7 7.4 8.7 19 17 10.5 9.4 18.1 15.8 12.7 7.7 Cr 68 77 -13.2 6.4 - - - - 32 37 -15.6 5.8 Mn 650 710 -9.2 6.9 463 500 -8.0 8.1 604 579 4.1 7.4 Ti 3800 3612 4.9 7.6 1720 1902 -10.6 4.2 3090 3241 -4.9 7.0 V 81 94 -16.0 5.1 24 25 -4.2 7.5 94 111 -18.1 6.9 -
[1] 徐国栋, 葛建华, 金斌, 等.X射线荧光光谱法与电感耦合等离子体-原子发射光谱法联用测定土壤、水系沉积物、岩石中21种主、次痕量元素[J].光谱实验室, 2011, 28(1):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201101000.htm
Xu G D, Ge J H, Jin B, et al.Determination of 21 major, minor and trace elements in soil, stream sediment and rock by X-ray fluorescence spectrometry and inductively coupled plasma-atomic emission spectrometry[J].Chinese Journal of Spectroscopy Laboratory, 2011, 28(1):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201101000.htm
[2] 刘亮, 周丽萍, 李中玺, 等.ICP-OES测定土壤、岩石及水系沉积物中的19中微量元素[J].光谱实验室, 2013, 30(5):2184-2187. http://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201305041.htm
Liu L, Zhou L P, Li Z X, et al.Determination of trace elements in soil, rock and water sediments by ICP-OES[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(5):2184-2187. http://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201305041.htm
[3] Moorl C, Lymberopoulou T, Dietrich V J.Determination of heavy metals in soils, sediments and geological materials by ICP-AES and ICP-MS[J].Mikrochimica Acta, 2001, 136:123-128. doi: 10.1007/s006040170041
[4] 刘峰, 秦樊鑫, 胡继伟, 等.不同混合酸消解样品对电感耦合等离子体原子发射光谱法测定土壤中重金属含量的影响[J].理化检验(化学分册), 2011, 47(8):951-954. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201108027.htm
Liu F, Qin F X, Hu J W, et al.Effects of different acid mixtures for sample digestion on the ICP-AES determination of heavy metal elements in soil[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2011, 47(8):951-954. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201108027.htm
[5] 赵玲, 冯永明, 李胜生, 等.碱熔-电感耦合等离子体质谱法测定化探样品中硼和锡[J].岩矿测试, 2010, 29(4):355-358. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20100406&flag=1
Zhao L, Feng Y M, Li S S, et al.Determination of boron and tin in geochemical exploration samples by inductively coupled plasma-mass spectrometry with alkali fusion sample preparation[J].Rock and Mineral Analysis, 2010, 29(4):355-358. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20100406&flag=1
[6] 乐叔葵, 段永梅.电感耦合等离子体质谱法(ICP-MS)测定土壤中重金属元素[J].中国无机分析化学, 2015, 5(3):16-19. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWQY201711207.htm
Le S K, Duan Y M.Determination of heavy metal elements in soil by ICP-MS[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(3):16-19. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWQY201711207.htm
[7] 赵如琳, 李宏萍, 王骏峰, 等.氢化物发生-原子荧光光谱法测定地质试样中锡[J].分析试验室, 2016, 35(10):1227-1231. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201610025.htm
Zhao R L, Li H P, Wang J F, et al.Determination of tin in geological samples using hydride genetarion-atomic fluorescence spectrometry[J].Chinese Journal of Analysis Laboratory, 2016, 35(10):1227-1231. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201610025.htm
[8] 徐鹏, 王青柏, 姜雅红.固体进样-石墨炉原子吸收光谱法测定土壤中重金属[J].分析试验室, 2015, 34(5):554-557. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201505016.htm
Xu P, Wang Q B, Jiang Y H.Direct determination of heavy metals in soil by graphite furnace atomic absorption spectrometry with solid sampling[J].Chinese Journal of Analysis Laboratory, 2015, 34(5):554-557. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201505016.htm
[9] 杨晓婧, 李美丽, 白建华.火焰原子吸收光谱法测定废水中的重金属离子[J].光谱实验室, 2010, 27(1):247-249. http://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201001058.htm
Yang X J, Li M L, Bai J H.Determination of heavy metal ions in waste water by the flame atomic absorption spectrometry[J].Chinese Journal of Spectroscopy Laboratory, 2010, 27(1):247-249. http://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201001058.htm
[10] Pan L, Qin Y C, Hu B, et al.Determination of nickel and palladium in environmental samples by low temperature ETV-ICP-OES coupled with liquid-liquid extraction with dimethylglyoxime as both extractant and chemical modifier[J].Chemical Research in Chinese Universities, 2007, 23(4):399-403. doi: 10.1016/S1005-9040(07)60086-5
[11] Wanlau R, Hu B, Jiang Z C, et al.Determination of trace metal impurities in cerium oxide by fluorination-assisted ETV-ICP-AES after HPLC separation[J].Journal of Rare Earths, 2004, 22(2):197-200. https://link.springer.com/article/10.1007/s12598-009-0002-x
[12] Vogt T, Bauer D, Neuroth M, et al.Quantitative multi-element analysis of argonne premium coal samples by ETV-ICP-OES-A highly efficient direct analytical technique for inorganics in coal[J].Fuel, 2015, 152:96-102. doi: 10.1016/j.fuel.2014.12.057
[13] 潘亮, 秦永超, 胡斌, 等.以DDTP为化学改进剂, 低温电热蒸发ICP-OES测定环境样品中的钴和镍[J].分析试验室, 2006, 25(8):45-49. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200608011.htm
Pan L, Qin Y C, Hu B, et al.Determination Co and Ni in environmental samples by low temperature electrothermal vaporization inductively couples plasma optical emission spectrometry using diethyldithiophpsphate (DDTP) as a chemical modifier[J].Chinese Journal of Analysis Laboratory, 2006, 25(8):45-49. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200608011.htm
[14] Asfaw A, Beauchemin D.Combination of a multimode sample introduction system with a pre-evaporation tube to improve multi-element analysis by ICP-OES[J].Journal of Analytical Atomic Spectrometry, 2012, 27(1):80-91. doi: 10.1039/C1JA10224A
[15] 李科学, 周卫东, 沈沁梅, 等.激光烧蚀-快脉冲放电等离子体光谱技术分析土壤中的Sn[J].光谱学与光谱分析, 2011, 31(8):2249-2252. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201108053.htm
Li K X, Zhou W D, Shen Q M, et al.Laser ablation and fast pulse discharge plasma spectroscopy analysis of Sn in soil[J].Spectroscopy and Spectral Analysis, 2011, 31(8):2249-2252. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201108053.htm
[16] 江祖成, 胡斌, 黄敏, 等.稀土元素的氟化辅助电热蒸发-等离子体光谱分析及蒸发机理研究[J].稀土, 1993, 15(6):23-29. http://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ199306006.htm
Jiang Z C, Hu B, Huang M, et al.Study on fluorination auxiliary electrothermal evaporation-ICP-AES and evaporation mechanism of rare earth elements[J].Chinese Rare Earth, 1993, 15(6):23-29. http://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ199306006.htm
[17] 李胜清, 胡斌, 江祖成.用ETV-ICP-MS研究Cr、Ni、Zr、Nb、Yb在石墨炉中的蒸发/原子化机理[J].分析科学学报, 2005, 21(5):473-480. http://www.cnki.com.cn/Article/CJFDTOTAL-FXKX200505000.htm
Li S Q, Hu B, Jiang Z C.Investigation of the vaporization and atomization mechanisms of Cr, Ni, Zr, Nb and Yb in graphite furnace by ETV-ICP-MS[J].Journal of Analytical Science, 2005, 21(5):473-480. http://www.cnki.com.cn/Article/CJFDTOTAL-FXKX200505000.htm
[18] 张雪梅, 张勤.发射光谱法测定勘查地球化学样品中银硼锡钼铅[J].岩矿测试, 2006, 25(4):323-326. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=200604107&flag=1
Zhang X M, Zhang Q.Determination of sliver, boron, tin, molybdenum and lead in geochemical exploration samples by emission spectrometry[J].Rock and Mineral Analysis, 2006, 25(4):323-326. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=200604107&flag=1
-