Determination of Rare Earth Elements in Ultra-fine Rock and Soil Samples by ICP-MS Using Microwave Digestion
-
摘要: 应用电感耦合等离子体质谱法(ICP-MS)分析岩石和土壤样品中稀土元素的含量,取样量可低至数毫克级,但200目样品粒度要求分析取样100mg才能保证代表性,导致ICP-MS灵敏度高、取样量小的优势难以得到充分发挥。本文研究了研磨方式、研磨时间、物料比对超细粒度土壤和岩石样品制备的影响,结果表明采用乙醇作为分散剂进行湿法球磨,200目粒度的土壤、岩石样品分别研磨10min和15min,土壤样品的物料比采用物料7g、研磨球500个、分散剂45mL,岩石样品的物料比选取物料5g、研磨球500个、分散剂45mL,细化程度最佳。在此条件下制备的超细粒度土壤标准物质GBW07404、GBW07447的粒径分布D95可低至7.51μm、7.05μm,超细粒度岩石标准物质GBW07104、GBW07121的D95可低至8.42μm、8.30μm。在硝酸-氢氟酸-过氧化氢酸溶体系中微波消解处理超细粒度岩石标准物质GBW07104,取样量减少至5mg,总用酸量减少至0.25mL,消解时间降低为25min,稀土元素的测定值与认定值基本一致,相对标准偏差在1.64%~5.21%之间。该方法用于分析其他超细粒度标准物质(GBW07404、GBW07447和GBW07121)中的稀土元素,相对误差为0.17%~6.60%,满足《地质矿产实验室测试质量管理规范》的一级标准。Abstract:
BACKGROUNDThe sampling weight can be as low as milligram level when the contents of rare earth elements in rock and soil samples are determined by inductively coupled plasma-mass spectrometry (ICP-MS). However, the size of 200 mesh samples requires 100mg to ensure representativeness, which makes it difficult for ICP-MS to make full use of its advantages of high sensitivity and small sampling volume. OBJECTIVESTo establish the method for the determination of rare earth elements in ultra-fine rock and soil samples by ICP-MS with microwave digestion. METHODSA method was developed for the determination of rare earth elements in ultra-fine rock and soil samples by ICP-MS with microwave digestion. The ultra-fine rock and soil samples were prepared by the planetary superfine pulverizing machine with wet grinding. Some parameters influencing the preparation of ultra-fine rock and soil samples, including grinding method, grinding time and the proportion of grinding balls were optimized. Microwave digestion of ultrafine-grained rock and soil samples in a nitric acid-hydrofluoric acid-hydrogen peroxide solution system, the sampling amount was reduced to 5mg, the total acid amount was reduced to 0.25mL and the digestion time was reduced to 25 minutes. RESULTSThe results indicated that the samples were best refined when the wet-milling was adopted with ethanol as a dispersant and the milling time was 10 minutes and 15 minutes for 200 mesh soil and rock samples, respectively. The material ratios were 7g materials, 500 grinding balls, 45mL dispersants for the preparation of ultra-fine soil samples, whereas 5g materials, 500 grinding balls, 45mL dispersants for the preparation of ultra-fine rock samples. The particle size distribution D95 of soil standard substance GBW07404 and GBW07447 can be as low as 7.51μm and 7.05μm, and the D95 of rock standard substance GBW07104 and GBW07121 can be 8.42μm and 8.30μm under the optimized conditions. Microwave digestion of ultrafine-grained rock sample GBW07104 in a nitric acid-hydrofluoric acid-hydrogen peroxide solution system, the sampling amount was reduced to 5mg, the total acid amount was reduced to 0.25mL, the digestion time was reduced to 25 minutes, and the measured value of rare earth elements was consistent with the certified value with the relative standard deviation is between 1.64% and 5.21%. CONCLUSIONSThis method was used for the detection of rare earth elements in other ultra-fine standard materials (GBW07404, GBW07447 and GBW07121), which yielded the relative standard deviation of 0.17%-6.60%, meeting the first criterion of Geology and Minerals Laboratory Testing Quality Management Standards. -
-
表 1 超细样品消解条件
Table 1. Digestion conditions of ultra-fine sample
条件 称样量
(mg)样品溶解加酸量 消解温度保持时间(min) 定容体积
(mL)120℃ 150℃ 180℃ 条件1 50 1.5mL硝酸, 0.5mL氢氟酸, 0.5mL双氧水 3 5 10 100 条件2 10 0.3mL硝酸, 0.1mL氢氟酸, 0.1mL双氧水 2 4 8 20 条件3 5 0.15mL硝酸, 0.05mL氢氟酸, 0.05mL双氧水 2 3 5 10 表 2 不同研磨方法下超细样品的粒径分布
Table 2. Particle size distributions of ultra-fine samples under different grinding methods
标准物质编号 干磨 湿磨(水作分散剂) 湿磨(乙醇作分散剂) D50(μm) D75(μm) D95(μm) D50(μm) D75(μm) D95(μm) D50(μm) D75(μm) D95(μm) GBW07404(石灰岩土) 4.58 6.93 17.53 2.92 4.37 9.15 2.85 3.91 8.90 GBW07447(盐碱土) 4.40 6.64 19.61 2.86 4.15 8.62 2.76 3.93 8.71 GBW07104(安山岩) 5.15 7.85 19.96 4.17 6.08 13.56 2.83 4.27 9.79 GBW07121
(花岗质片麻岩)5.39 8.01 20.53 4.26 6.25 12.24 2.96 4.3 10.13 注:D表示粒径体积分数统计分布。例如D95 =8.90表示95%的样品粒径小于8.90μm。 表 3 不同研磨时间下超细样品的粒径分布
Table 3. Particle size distributions of ultra-fine samples under different grinding time
标准物质编号 研磨5min 研磨10min 研磨15min 研磨20min D50(μm) D75(μm) D95(μm) D50(μm) D75(μm) D95(μm) D50(μm) D75(μm) D95(μm) D50(μm) D75(μm) D95(μm) GBW07404
(石灰岩土)3.39 5.17 12.36 2.85 3.91 8.90 3.09 4.51 10.23 3.17 4.96 10.98 GBW07447
(盐碱土)3.14 5.06 10.75 2.76 3.93 8.71 2.93 4.60 9.68 3.15 4.71 9.34 GBW07104
(安山岩)3.32 5.30 11.26 2.83 4.27 9.79 2.73 3.86 8.64 2.91 4.15 9.57 GBW07121
(花岗质片麻岩)3.44 5.85 12.15 2.96 4.3 10.13 2.90 4.01 9.01 3.05 4.22 10.03 表 4 L9(33)正交实验设计
Table 4. Experimental design with L9(33) orthogonal array
实验编号 物料质量
(g)研磨球数量
(个)分散剂体积
(mL)水平1 5 300 15 水平2 7 500 30 水平3 10 700 45 1 5 300 15 2 5 500 30 3 5 700 45 4 7 300 30 5 7 500 45 6 7 700 15 7 10 300 45 8 10 500 15 9 10 700 30 表 5 L9(33)正交实验下超细样品的D95粒径
Table 5. Particle sizes of ultra-fine samples under L9(33) orthogonal array
编号 D95(μm) GBW07404 GBW07447 GBW07104 GBW07121 1 12.64 12.85 13.65 14.01 2 9.31 8.93 10.32 10.71 3 9.94 9.53 8.57 8.63 4 9.52 9.01 13.89 13.79 5 7.51 7.05 9.23 9.55 6 13.73 12.94 14.60 15.02 7 11.62 11.90 13.60 13.97 8 15.01 14.76 15.26 15.88 9 10.96 11.02 14.05 14.75 K1 10.63 11.26 13.79 10.44 11.25 13.52 10.85 13.71 14.50 11.12 13.92 14.97 K2 10.25 10.61 9.93 9.67 10.25 9.65 12.57 11.60 12.75 12.79 12.05 13.08 K3 12.53 11.54 9.69 12.56 11.16 9.49 14.30 12.41 10.47 14.87 12.80 10.72 R 1.90 0.93 4.10 2.89 1.00 4.02 3.45 2.11 4.03 3.75 1.87 4.25 表 6 不同条件超细标准样品GBW07104的分析结果
Table 6. Analytical results of ultra-fine standard sample GBW07104 with different preparation procedures
稀土元素 认定值
(μg/g)表 1中的条件1 表 1中的条件2 表 1中的条件3 封闭压力酸溶法 6次测定平均值
(μg/g)RSD
(%)6次测定平均值
(μg/g)RSD
(%)6次测定平均值
(μg/g)RSD
(%)6次测定平均值
(μg/g)RSD
(%)Sc 9.50±0.7 9.35 3.71 9.63 4.85 9.58 5.09 9.41 4.10 La 22.0±2.0 21.5 5.04 22.4 5.21 20.8 2.91 23.2 4.72 Ce 40.0±3.0 42.3 4.25 39.5 4.83 40.6 3.20 43.1 4.11 Pr 4.90±0.40 4.71 2.72 4.86 2.94 4.77 3.30 4.94 2.86 Nd 19.0±2.0 19.8 4.43 17.9 4.36 18.4 4.93 19.2 4.35 Sm 3.40±0.20 3.45 3.10 3.27 4.07 3.48 3.72 3.32 3.27 Eu 1.02±0.05 0.98 3.52 1.15 3.91 1.10 4.17 1.07 2.65 Gd 2.70±0.40 2.82 4.56 2.91 4.25 2.76 2.15 2.87 2.14 Tb 0.41±0.05 0.43 3.03 0.38 3.35 0.45 3.32 0.42 3.32 Dy 1.85±0.17 1.89 3.17 1.76 3.71 1.92 4.05 1.79 2.93 Ho 0.34±0.03 0.32 3.92 0.35 4.62 0.31 5.21 0.37 4.05 Er 0.85±0.13 0.89 4.71 0.91 2.11 0.79 1.64 0.82 4.41 Tm 0.15±0.05 0.14 3.94 0.15 4.22 0.16 3.82 0.15 3.96 Yb 0.89±0.13 0.85 3.81 0.79 4.43 0.83 4.50 0.90 3.40 Lu 0.12±0.03 0.11 3.77 0.12 3.92 0.11 4.16 0.12 2.70 Y 9.30±1.20 9.05 3.82 9.70 2.18 9.10 4.05 8.90 2.16 表 7 方法准确度
Table 7. Accuracy tests of the methods
稀土元素 GBW07404 GBW07447 GBW07121 认定值
(μg/g)测定值
(μg/g)相对误差
(%)认定值
(μg/g)测定值
(μg/g)相对误差
(%)认定值
(μg/g)测定值
(μg/g)相对误差
(%)Sc 20.0±2.0 18.2 4.00 9.70±0.40 9.48 2.27 5.00±4.0 5.22 4.40 La 53.0±4.0 51.5 2.83 30.0±1.0 28.6 4.67 25.0±2.0 23.7 5.20 Ce 136±11 132 2.94 57.0±2.0 59.1 3.68 48.0±3.0 49.5 3.13 Pr 8.40±1.70 8.00 4.76 6.90±0.30 6.75 2.17 5.80±0.80 5.81 0.17 Nd 27.0±2.0 27.2 0.74 26.0±1.0 24.7 5.00 21.0±4.0 21.9 4.29 Sm 4.40±0.40 4.22 4.09 5.0±0.2 5.20 4.00 3.30±0.30 3.18 3.64 Eu 0.85±0.07 0.88 3.53 1.06±0.05 1.09 2.83 1.00±0.20 0.98 2.00 Gd 4.70±0.50 4.39 6.60 4.40±0.20 4.63 5.23 2.40±0.30 2.51 4.58 Tb 0.94±0.09 0.91 3.19 0.74±0.04 0.72 2.70 0.29±0.03 0.30 3.45 Dy 6.60±0.60 6.47 1.97 4.20±0.20 4.11 2.14 1.52±0.14 1.57 3.29 Ho 1.46±0.12 1.38 5.48 0.84±0.06 0.87 3.57 0.27±0.03 0.28 3.70 Er 4.50±0.70 4.38 2.67 2.40±0.20 2.29 4.58 0.76±0.08 0.73 3.95 Tm 0.70±0.10 0.66 5.71 0.39±0.03 0.38 2.56 0.11±0.02 0.10 9.09 Yb 4.80±0.60 4.69 2.29 2.50±0.20 2.56 2.40 0.69±0.08 0.71 2.90 Lu 0.75±0.06 0.72 4.00 0.38±0.03 0.39 2.63 0.11±0.01 0.12 9.09 Y 39.0±6.0 37.3 4.36 23.0±2.0 24.1 4.78 7.30±0.90 7.50 2.74 -
[1] 牛英杰, 刘威, 高亚龙, 等.老挝爬奔金矿床稳定同位素、稀土元素地球化学特征[J].地质调查与研究, 2015, 38(4):277-283. doi: 10.3969/j.issn.1672-4135.2015.04.006
Niu Y J, Liu W, Gao Y L.Geochemical characteristics of stable isotopes and REE at the Phapun gold deposit in Laos[J].Geological Survey and Research, 2015, 38(4):277-283. doi: 10.3969/j.issn.1672-4135.2015.04.006
[2] Tranchide G, Oliveri E, Angelone M, et al.Distribution of rare earth elements in marine sediments from the Strait of Sicily (Western Mediterranean Sea):Evidence of phosphogypsum waste contamination[J].Marine Pollution Bulletin, 2011, 62(1):182-191. http://cn.bing.com/academic/profile?id=b58c4a65dbe3451ae1dd616a6c882f2e&encoded=0&v=paper_preview&mkt=zh-cn
[3] 王学锋, 许春雪, 顾雪, 等.典型稀土矿区周边土壤中稀土元素含量及赋存形态研究[J].岩矿测试, 2019, 38(2):137-146. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201807180085
Wang X F, Xu C X, Gu X, et al.Concentration and fractionation of rare earth elements in soils surrounding rare earth ore area[J].Rock and Mineral Analysis, 2019, 38(2):137-146. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201807180085
[4] 高英杰, 柳玉英, 陈娟平.钇(Ⅲ)-钙黄绿素-吐温80体系荧光光度法测定痕量钇[J].冶金分析, 2012, 32(6):52-55. doi: 10.3969/j.issn.1000-7571.2012.06.012
Gao Y J, Liu Y Y, Chen J P.Determination of trace yttrium by fluorescence spectrophotometry with Y(Ⅲ)-calcein-Tween 80 system[J].Metallurgical Analysis, 2012, 32(6):52-55. doi: 10.3969/j.issn.1000-7571.2012.06.012
[5] 王宝磊, 吴玉峰, 章启军, 等.草酸盐重量法测定荧光粉废料中稀土氧化物的总量[J].稀土, 2016, 37(5):92-96. http://d.old.wanfangdata.com.cn/Conference/8834691
Wang B L, Wu Y F, Zhang Q J, et al.Determination of total rare earth oxides content in waste phosphors with oxalate gravimetric method[J].Chinese Rare Earth, 2016, 37(5):92-96. http://d.old.wanfangdata.com.cn/Conference/8834691
[6] 姜怀坤, 吕振生, 成学海, 等.P507负载泡塑吸附分离-中子活化法测定地质样品中的稀土元素[J].分析试验室, 2014, 33(6):737-740. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201406030
Jiang H K, Lü Z S, Cheng X H, et al.Determination of rare earth elements in geological samples by adsorption and separation with P507 foam loaded plastic-neutron activation analysis[J].Chinese Journal of Analysis Laboratory, 2014, 33(6):737-740. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxsys201406030
[7] 周仕林, 刘芳, 高明慧, 等.稀土元素测定方法的研究进展[J].理化检验(化学分册), 2014, 50(3):392-396. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201403040
Zhou S L, Liu F, Gao M H, et al.Recent advances of researches on determination of rare-earth element[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2014, 50(3):392-396. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201403040
[8] Khorge C R, Patwardhan A A.Separation and determina-tion of REEs and Y in columbite-tantalite mineral by ICP-OES:A rapid approach[J].Atomic Spectroscopy, 2018, 39(2):75-80.
[9] 王斌, 张江锋, 温健昌, 等.电感耦合等离子体原子发射光谱法测定陶瓷色釉料中稀土元素[J].中国稀土学报, 2015, 33(1):124-128. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201505034
Wang B, Zhang J F, Wen J C, et al.Determination of total rare earth element in ceramic color glaze by inductively coupled plasma optical emission spectrometer[J].Journal of the Chinese Society of Rare Earths, 2015, 33(1):124-128. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201505034
[10] Satyanarayanan M, Balaram V, Sawant S S, et al.Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J].Atomic Spectroscopy, 2018, 39(1):1-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=399d63251e1afd27679392d6e00fdd4d
[11] Francisco A, Francesco S, Francesco R, et al.Comparison of inductively coupled plasma spectrometry techniques for the direct determination of rare earth elements in digests from geological samples[J].Analytica Chimica Acta, 2010, 678:18-25. doi: 10.1016/j.aca.2010.07.036
[12] 王晓红, 何红蓼, 王毅民, 等.超细样品的地质分析应用[J].分析测试学报, 2010, 29(6):578-583. http://d.old.wanfangdata.com.cn/Periodical/fxcsxb201006010
Wang X H, He H L, Wang Y M, et al.Geoanalytical techniques using ultra-fine samples[J].Journal of Instrumental Analysis, 2010, 29(6):578-583. http://d.old.wanfangdata.com.cn/Periodical/fxcsxb201006010
[13] 王毅民, 王晓红, 高玉淑, 等.中国地质标准标准物质制备技术与方法研究进展[J].地质通报, 2010, 29(7):1090-1104. doi: 10.3969/j.issn.1671-2552.2010.07.016
Wang Y M, Wang X H, Gao Y S, et al.Advances in preparing techniques for geochemical reference materials in China[J].Geological Bulletin of China, 2010, 29(7):1090-1104. doi: 10.3969/j.issn.1671-2552.2010.07.016
[14] 孙德忠, 何红蓼.封闭酸溶-电感耦合等离子体质谱法分析超细粒度地质样品中42个元素[J].岩矿测试, 2007, 26(1):21-25. doi: 10.3969/j.issn.0254-5357.2007.01.006 http://www.ykcs.ac.cn/article/id/ykcs_20070112
Sun D Z, He H L.Determination of 42 elements in ultra-fine geological samples by inductively coupled plasma-mass spectrometry with pressurized acid digestion[J].Rock and Mineral Analysis, 2007, 26(1):21-25. doi: 10.3969/j.issn.0254-5357.2007.01.006 http://www.ykcs.ac.cn/article/id/ykcs_20070112
[15] 费书梅, 杜士毅, 庞振兴, 等.电感耦合等离子体质谱法测定钢中痕量酸溶铝[J].冶金分析, 2018, 38(3):35-40. http://d.old.wanfangdata.com.cn/Periodical/yjfx201803007
Fei S M, Du S Y, Pang Z X, et al.Determination of trace acid soluble aluminium in steel by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2018, 38(3):35-40. http://d.old.wanfangdata.com.cn/Periodical/yjfx201803007
[16] 黎卫亮, 程秀花, 李忠煜, 等.碱熔共沉淀-电感耦合等离子体质谱法测定橄榄岩中的稀土元素[J].岩矿测试, 2017, 36(5):468-473. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201607130099
Li W L, Cheng X H, Li Z Y, et al.Determination of rare earth elements in peridotite by inductively coupled plasma-mass spectrometry after alkali fusion and Mg(OH)2 and Fe(OH)3 coprecipitation[J].Rock and Mineral Analysis, 2017, 36(5):468-473. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201607130099
[17] 马生凤, 朱云, 孙红宾, 等.封闭溶样-电感耦合等离子体质谱法测定硫化铅矿石中40种微量元素[J].矿物岩石地球化学通报, 2016, 35(3):527-533. doi: 10.3969/j.issn.1007-2802.2016.03.016
Ma S F, Zhu Y, Sun H B, et al.Determination of 40 elements in lead sulfide ores by inductively coupled plasma mass spectrometry with pressurized acid digestion of samples[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3):527-533. doi: 10.3969/j.issn.1007-2802.2016.03.016
[18] 丁玉龙, 宁曦, 桂端, 等.ICP-MS测定海洋鲸豚的微量元素及其健康风险评估[J].光谱学与光谱分析, 2015, 35(9):2407-2411. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201509007
Ding Y L, Ning X, Gui D, et al.Determination of trace elements in marine cetaceans by ICP-MS and health risk assessment[J].Spectroscopy and Spectral Analysis, 2015, 35(9):2407-2411. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201509007
[19] 吕乐福, 李晓云, 张红卫, 等.湿法超细研磨中磷块岩机械力化学效应[J].矿物学报, 2016, 36(3):382-386. Lü L F, http://d.old.wanfangdata.com.cn/Periodical/kwxb201603010
Lü L F, Li X Y, Zhang H W, et al.Mechano-chemical effects of phosphorite on superfine grinding in ball-stirring mill in wet[J].Acta Mineralogica Sinica, 2016, 36(3):382-386. http://d.old.wanfangdata.com.cn/Periodical/kwxb201603010
[20] 王莉霄, 钱天伟, 丁庆伟, 等.球磨法制备黄铁矿粉末及其表征[J].中北大学学报(自然科学版), 2014, 35(6):729-733. doi: 10.3969/j.issn.1673-3193.2014.06.022
Wang L X, Qian T W, Ding Q W, et al.Preparation and characterization of pyrite nanoparticles by ball milling[J].Journal of North University of China (Natural Science Edition), 2014, 35(6):729-733. doi: 10.3969/j.issn.1673-3193.2014.06.022
[21] 王觅堂, 李梅, 柳召刚, 等.超细粉体的团聚机理和表征及消除[J].中国粉体技术, 2008, 14(3):46-59. doi: 10.3969/j.issn.1008-5548.2008.03.012
Wang M T, Li M, Liu Z G, et al.Mechanism and characterization and countermeasures of agglomeration of ultrafine particles[J].China Powder Science and Technology, 2008, 14(3):46-59. doi: 10.3969/j.issn.1008-5548.2008.03.012
[22] 王明, 谌启明.表面活性剂在超细硬质合金球磨工艺中的作用及研究进展[J].稀有金属与硬质合金, 2008, 36(4):49-52. doi: 10.3969/j.issn.1004-0536.2008.04.012
Wang M, Chen Q M.The action and latest development of surfactants in the ball milling process of ultrafine cemented carbide[J].Rare Metals and Cemented Carbides, 2008, 36(4):49-52. doi: 10.3969/j.issn.1004-0536.2008.04.012
[23] 方建强, 张林进, 张方舒, 等.搅拌磨湿法粉磨制备超细ZnO及动力学研究[J].硅酸盐通报, 2014, 33(5):1045-1051. http://d.old.wanfangdata.com.cn/Periodical/gsytb201405011
Fang J Q, Zhang L J, Zhang F S, et al.Research on wet preparation of ZnO surperfine powder and grinding kinetics in stride mill[J].Bulletin of the Chinese Ceramic Society, 2014, 33(5):1045-1051. http://d.old.wanfangdata.com.cn/Periodical/gsytb201405011
[24] 高大钊, 袁聚云.土质学与土力学(第三版)[M].北京:人民交通出版社, 2006:23-27.
Gao D Z, Yuan J Y.Soil Geology and Soil Mechanics (The Third Edition)[M].Beijing:China Communication Press, 2006:23-27.
[25] 张森森, 李雄耀, 冯俊明, 等.行星式球磨破碎CLRS-1模拟月壤的粒度分布特征[J].矿物岩石地球化学通报, 2014, 33(1):65-69. doi: 10.3969/j.issn.1007-2802.2014.01.008
Zhang S S, Li X Y, Feng J M, et al.Particle size distribution characteristics of CLRS-1 lunar soil stimulant processed by a planetary ball mill[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1):65-69. doi: 10.3969/j.issn.1007-2802.2014.01.008
[26] 钟远, 孙柏, 李海军, 等.高含量氯化铷ICP-OES法分析测定[J].光谱学与光谱分析, 2015, 35(1):223-228. doi: 10.3964/j.issn.1000-0593(2015)01-0223-06
Zhong Y, Sun B, Li H J, et al.Determination of high concentrations rubidium chloride by ICP-OES[J].Spectroscopy and Spectral Analysis, 2015, 35(1):223-228. doi: 10.3964/j.issn.1000-0593(2015)01-0223-06
[27] 杨叶琴, 赵昌平, 赵杰.微波消解-电感耦合等离子体原子发射光谱法测定土壤中8种重金属元素的含量[J].理化检验(化学分册), 2019, 55(1):63-67. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201901011
Yang Y Q, Zhao C P, Zhao J.Determination of eight heavy metal elements in soil by microwave digestion-inductively coupled plasma atomic emission spectrometry[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2019, 55(1):63-67. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201901011
[28] 凤海元, 马海萍.溶样方法对电感耦合等离子体质谱法测定区域地球化学调查样品中6种元素的影响[J].冶金分析, 2016, 36(8):18-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201608004
Feng H Y, Ma H P.Influence of sample dissolution method on the determination of six elements in regional geochemical survey sample by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2016, 36(8):18-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjfx201608004
[29] 孙晓慧, 李章, 刘希良.微波消解-电感耦合等离子体原子发射光谱法测定土壤和水系沉积物中15种组分[J].冶金分析, 2014, 34(11):56-60. http://d.old.wanfangdata.com.cn/Periodical/yjfx201411011
Sun X H, Li Z, Liu X L.Determination of fifteen components in soil and stream sediment by inductively coupled plasma atomic emission spectrometry after microwave digestion[J].Metallurgical Analysis, 2014, 34(11):56-60. http://d.old.wanfangdata.com.cn/Periodical/yjfx201411011
[30] 刘宇, 魏双.高压消解-电感耦合等离子体质谱法测定铌钽矿石中铌钽含量[J].地质调查与研究, 2018, 41(3):232-234. doi: 10.3969/j.issn.1672-4135.2018.03.012
Liu Y, Wei S.Determination of niobium and tantalum content in Nb-Ta ore by high pressure digestion-inductively coupled plasma mass spectrometry[J].Geological Survey and Research, 2018, 41(3):232-234. doi: 10.3969/j.issn.1672-4135.2018.03.012
[31] 张楠, 徐铁民, 吴良英, 等.微波消解-电感耦合等离子体质谱法测定海泡石中的稀土元素[J].岩矿测试, 2018, 37(6):644-649. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201803160023
Zhang N, Xu T M, Wu L Y, et al.Determination of rare earth elements in sepiolite by ICP-MS using microwave digestion[J].Rock and Mineral Analysis, 2018, 37(6):644-649. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201803160023
[32] 李丽君, 王娜.电感耦合等离子体质谱法测定高岭土中的15种稀土元素[J].理化检验(化学分册), 2017, 53(6):689-692. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201706014
Li L J, Wang N.Determination of rare earth elements in sepiolite by ICP-MS using microwave digestion[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(6):689-692. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201706014
-