Comparison of Laboratory Analysis Parameters and Guidelines for Global Geochemical Baselines and Environmental Monitoring
-
摘要: 全球高质量一致性地球化学基准数据和建立全球地球化学一张图平台,是持续监测全球环境变化的定量参照标尺。本文通过对中国、欧洲、美国和澳大利亚汞、镉、钨地球化学数据对比和中国同一实验室间隔15年两次分析数据对比发现:镉元素在不同实验室和同一实验室间隔15年分析的数据是一致的(相关系数0.96),汞元素一致性较差(相关系数0.74),钨元素不具有可比性(相关系数0.56)。镉元素分析结果的高度一致是因为分析方法相同的和检出限相近;汞元素一致性较差,特别是低含量汞存在显著差异,是因为分析方法不同和检出限不同;钨元素在不同实验室不具有可比性是因为实验室分析方法存在显著差异。环境变化量必须大于野外采样误差(REsmpl)和实验室重复样误差(RDlab)之和(RCenv > REsmpl+RDlab),才能确认观测点发生了环境显著变化。因此,必须将采样误差和实验室分析误差降到最低。本文提出实验室分析的6点基本要求:①原始样品过10目筛,使用无污染加工到粒度小于200目;②使用成熟的多方法分析71种元素+其他指标,其中主量组分以玻璃熔片X射线荧光光谱法(XRF)分析为主,微量元素以四酸分解样品,电感耦合等离子体质谱法(ICP-MS)和电感耦合等离子体发射光谱法(ICP-OES)为主要分析技术,配合其他特殊分析方法;③分析检出限必须低于地壳克拉克值,报出率不低于90%;④使用的标准物质必须具有涵盖所有分析元素的认定值;⑤实验室重复样分析相对误差含量小于3倍检出限RD≤40%,大于3倍检出限RD≤20%,主量元素、铁族元素和重金属元素重复样分析相对误差RD≤20%;⑥主量组分SiO2、Al2O3、Fe2O3、FeO、MnO、MgO、CaO、Na2O、K2O、TiO2、P2O5、H2O+(结晶水)、有机碳、CO2、SO2等15项,或SiO2、Al2O3、Fe2O3、FeO、MnO、MgO、CaO、Na2O、K2O、TiO2、P2O5、LOI(烧失量)等12项加和为99.3%~100.7%。Abstract:
BACKGROUND Global harmonious high-quality geochemical data and accompanying maps are reference baselines for quantifying future human-induced or natural environmental changes. OBJECTIVESTo ensure the accuracy of geochemical reference values and analysis data, advices were made for laboratory analysis. METHODSThe analytical data of Cd, Hg and W from China, USA, Europe and Australia were compared and two analysis data collected 15 years apart from one laboratory in China were also compared. RESULTSAll of the cadmium analysis data were consistent with a correlation coefficient of 0.96. Mercury was poorly consistent with a correlation coefficient of 0.74, and tungsten was not comparable with a correlation coefficient of 0.56. The analysis results of cadmium were highly consistent because the analysis method was the same and the detection limit was comparable. The consistency of mercury was poor, especially the low-content mercury, which was significantly different due to different analysis methods and detection limits. Tungsten was not comparable due to different laboratory analysis methods. The prerequisite for recognition of environmental changes (RCenv > REsmpl+RDlab) was that the change value must be larger than the value of field sampling error (REsmpl) and laboratory analysis error (RDlab). Therefore, sampling error and laboratory analysis error must be minimized. CONCLUSIONSSix general guidelines are proposed. (1) The original sample is separated through a 10-mesh sieve and processed to a particle size of less than 200 mesh using a pollution-free method. (2) A total of 71 elements plus other parameters should be determined by well-established multiple analysis methods, e.g., fused glass bead-XRF for major elements and 4-acids ICP-MS and ICP-OES for minor elements in combination with other methods. (3) The method detection limits must be lower than crustal abundance of the chemical elements and reportable data percentage must be more than 90%. (4) The geochemical reference materials used for quality control should contain the reported certified CRM values for all elements. (5) Analytical relative errors for the triplicate samples should be less than 40% (RD ≤ 40%) if concentration of the element is less than 3 times detection limits, and less than 20% (RD ≤ 20%) for the elements with concentration more than 3 times detection limits as well as major elements, Fe-group elements and toxic metals. (6) The total contents of major elements SiO2, Al2O3, Fe2O3, FeO, MnO, MgO, CaO, Na2O, K2O, TiO2, P2O5, H2O+, CO2, SO2 and organic matters or those of SiO2, Al2O3, Fe2O3, FeO, MnO, MgO, CaO, Na2O, K2O, TiO2, P2O5 and LOI should be at 99.3%-100.7%. -
Key words:
- geochemical datum /
- mercury /
- cadmium /
- tungsten /
- sampling error /
- laboratory analysis error
-
-
图 1 FOREGS和IGGE实验室分析Cd、Hg和W数据相关性散点图[26]
Figure 1.
图 2 FOREGS和IGGE实验室分析Cd、Hg和W地球化学图对比[26]
Figure 2.
表 1 已经完成的和正在进行的全球尺度地球化学填图计划
Table 1. Finished and on-going global-scale geochemical mapping projects in the world
国家 中文名称 英文名称 简称 开展时间 文献 中国 全国环境地球化学监控网络及全国
动态地球化学图计划Environmental Geochemical Monitoring Networks
and Dynamic Geochemical Maps in ChinaEGMON 1992—1996 [8] 中国 中国地球化学基准计划 China Geochemical Baselines CGB 2008—2014 [9-11] 欧洲 欧洲地球化学填图基准值计划 FOREGS Geochemical Baseline Mapping Programme FOREGS 1996—2004 [12-13] 欧洲 欧洲农牧业区土壤地球化学填图计划 EuroGeoSurveys Geochemical Mapping of
Agricultural and Grazing Land Soil ProjectGEMAS 2007—2015 [11-17] 美国 北美土壤地球化学景观计划 North American Soil Geochemical Landscapes
ProjectNASGLP 2007—2016 [18-20] 澳大利亚 澳大利亚国家地球化学调查计划 National Geochemical Survey in Australia NGSA 2007—2011 [21-22] 与中国合作
的国家“化学地球”大科学计划 International Science Cooperation on
“Mapping Chemical Earth”Chemical Earth 2016— [23] 表 2 三次对比所挑选的一致性和不一致性元素
Table 2. Elements with consistent and unconsistent results by data comparability
全球(洲际)尺度地球化学基准填图计划 一致性的元素 不一致性的元素 欧洲FOREGS计划样品在中国和欧洲不同实验室分析数据的一致性对比 23个元素(完全一致):As, Ba, Co, Cr, Ga, Gd, Mn, P, Pb, Rb, Sc, Sr, Th, Ti, U, Y, Zr, Al2O3, CaO, TFe2O3, MgO, Na2O, SiO2
21个元素(存在微小偏差):Ce, Cu, Dy, Er, Eu, Hf, Ho, K2O, La, Lu, Nb, Nd, Ni, Pr, S, Sm, Ta, Tb, Tl, Tm, Yb7个元素:Ag, V, Hg,
Bi, I, Sn, Te欧洲GEMAS计划和澳大利亚NGSA计划样品中插入相同的标准物质数据一致性对比 26个元素:As, Ba, Ce, Co, Cr, Ga, Nb, Ni, Pb, Rb, Sr, Th, V, Y, Zn, Zr, Al2O3, CaO, K2O, TFe2O3, MgO, MnO, Na2O, P2O5, SiO2, TiO2 - 中国EGMON计划、欧洲FOREGS计划和澳大利亚NGSA计划数据的一致性对比 26个元素:Ba, Ce, Co, Cr, Cu, Mo, Nb, Ni, Pb, Rb, Sr, Th, V, Y, Zn, Zr, Al2O3, CaO, K2O, TFe2O3, MgO, MnO, Na2O, P2O5, SiO2, TiO2 - 中国CGB计划、欧洲FOREGS计划、澳大利亚NGSA计划、北美NASGLP计划数据一致性对比 27个元素:Al2O3, CaO, K2O, MgO, MnO, Na2O, P2O5, TFe2O3, TiO2,As, Ba, Ce, Co, Cr, Cu, La, Nb, Ni, Pb, Rb, Sc, Sr, Th, U, V, Y, Zn 11个元素:Ag, Be,
Bi, Cd, Cs, Ga,
Hg, Mo, Sb, Sn, W表 3 共同分析的38个元素有11个元素数据不合格的原因
Table 3. Reasons why 11 elements analyzed by four projects could be directly comparable
元素 不具有可比性的原因 Ag 检出限不符合要求:美国NASGLP、澳大利亚NGSA
报出率不符合要求:澳大利亚NGSA、美国NASGLP
质量监控不符合要求:澳大利亚NGSABe 检出限不符合要求:澳大利亚NGSA
报出率不符合要求:欧洲FOREGS、澳大利亚NGSA
质量监控不符合要求:澳大利亚NGSA、美国NASGLPBi 检出限不符合要求:欧洲FOREGS
质量监控不符合要求:澳大利亚NGSA、美国NASGLPCd 报出率不符合要求:澳大利亚NGSA、美国NASGLP
质量监控不符合要求:澳大利亚NGSACs 质量监控不符合要求:欧洲FOREGS
报出率不符合要求:美国NASGLPGa 质量监控不符合要求:澳大利亚NGSA、美国NASGLP Hg 报出率不符合要求:澳大利亚NGSA
质量监控不符合要求:澳大利亚NGSAMo 质量监控不符合要求:澳大利亚NGSA、美国NASGLP Sb 检出限不符合要求:澳大利亚NGSA、美国NASGLP
报出率不符合要求:澳大利亚NGSA
质量监控不符合要求:澳大利亚NGSASn 检出限不符合要求:欧洲FOREGS
报出率不符合要求:欧洲FOREGS
质量监控不符合要求:澳大利亚NGSA、美国NASGLPW 检出限不符合要求:欧洲FOREGS
报出率不符合要求:欧洲FOREGS、欧洲FOREGS
质量监控不符合要求:澳大利亚NGSA、美国NASGLP表 4 Cd、Hg和W在FOREGS和IGGE实验室的分析方法、中位数及两实验室数据之间的相关系数
Table 4. Analytical method, the median and correlation between FOREGS and IGGE laboratory for Cd, Hg and W
元素 实验室 分析粒级
(mm)溶样方法 分析方法 检出限
(mg/kg)报出率
(%)中位数
(mg/kg)相关系数 Cd FOREGS 2 氢氟酸、硝酸 ICP-MS 0.01 95 0.10 0.96 IGGE 2 氢氟酸、硝酸、高氯酸、王水 ICP-MS 0.03 94 0.11 Hg FOREGS 2 - 测汞仪 0.0001 100 0.028 0.74 IGGE 2 王水 HG-AFS 0.002 100 0.041 W FOREGS 2 熔融制片 XRF 5 3 3 0.56 IGGE 2 氢氟酸、硝酸、高氯酸、王水 ICP-MS 0.3 96 96 表 5 EGMON和CGB计划中Cd和Hg分析数据主要统计参数
Table 5. Statistical parameters of Cd and Hg in EGMON and CGB projects
元素 计划 分析方案 检出限 报出率
(%)土壤层位 最小值
(mg/kg)最大值
(mg/kg)平均值
(mg/kg)中位数
(mg/kg)25%
分位数75%
分位数Cd EGMON 四酸溶样, 0.02mg/kg 100 表层(0~25cm) 0.02 3.06 0.15 0.12 0.09 0.16 (1995年) AAS分析 100 深层(100cm) 0.03 0.44 0.13 0.12 0.09 0.16 CGB 四酸溶样, 0.01mg/kg 100 表层(0~25cm) 0.02 45.98 0.26 0.14 0.1 0.2 (2010年) ICP-MS分析 100 深层(100cm) 0.02 21.2 0.17 0.11 0.08 0.16 Hg EGMON 王水溶样, 5μg/kg 100 表层(0~25cm) 5 9300 94 31 17 0.071 (1995年) CV-AFS分析 100 深层(100cm) 5 1680 70 32 17 67 CGB 王水溶样, 0.5μg/kg 100 表层(0~25cm) 0. 5 20201 68.8 26.5 13.4 56.5 (2010年) CV-AFS分析 100 深层(100cm) 0. 5 60001 65.5 18.4 11 36.5 表 6 全球地球化学基准使用的分析方案
Table 6. Laboratory analysis scheme of global geochemical baselines
序号 分析指标 指标
个数分析方法 1 SiO2, Al2O3, TFe2O3, CaO, MgO, Na2O, K2O, P2O5, MnO, TiO2 10 玻璃熔融制片-X射线
荧光光谱法2 (SiO2), (Al2O3), (TFe2O3), (CaO), (MgO), (Na2O), (K2O), As, Ba, Br, Ce, Cl, Co, Cr, Cu, Ga, La, (Mn), Nb, Ni, (P), Pb, Rb, S, Sr, Th, (Ti), V, Y, Zn, Zr 31 粉末压饼- X射线
荧光光谱法3 Bi, Cd, (Co), Cs, (Ga), Hf, In, Li, Mo, (Nb), (Ni), (Pb), (Rb), Sb, Sc, Ta, (Th), Tl, U, W, (Zn) 21 电感耦合等离子体质谱法 4 (Y), (La), (Ce), Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, (Sc), (Tl) 17 电感耦合等离子体质谱法 5 Te 1 电感耦合等离子体质谱法 6 Re 1 电感耦合等离子体质谱法 7 Pt, Pd 2 电感耦合等离子体质谱法 8 (Ba), Be, (Cr), (Cu), (Li), (Mn), (P), (Sr), (Ti), (V), (Zn), (Al2O3), (CaO), (K2O), (MgO), (Na2O) 16 电感耦合等离子体质谱法 9 (As), (Sb) 2 氢化物-原子荧光光谱法 10 Hg 1 冷蒸气-原子荧光光谱法 11 Se 1 氢化物发生-原子荧光光谱法 12 Ge 1 氢化物发生-原子荧光光谱法 13 Ag, B, (Mo), (Pb), Sn 5 发射光谱法 14 Au 1 原子吸收光谱法 15 Os, Ru 2 分光光度法 16 Ir 1 分光光度法 17 I 1 分光光度法 18 Rh 1 极谱法 19 F 1 离子选择性电极法 20 N, C 2 氧化燃烧-气相色谱法 21 Org.C 1 氧化燃烧电位法 22 FeO 1 容量法 23 H2O+ 1 重量法 24 pH 1 电位法 25 CO2 1 数学计算 注:带括号的元素为采用两种以上方法进行对检的元素。 表 7 各项元素/指标分析方法检出限要求
Table 7. Method detection limits for analytical parameters
序号 元素/指标 分析方法检出限 1 Ag 0.02 2 As 1 3 Au 0.0002 4 B 1 5 Ba 5 6 Be 0.5 7 Bi 0.05 8 Br 1 9 Cd 0.02 10 Cl 20 11 Co 1 12 Cr 5 13 Cs 0.5 14 Cu 1 15 F 100 16 Ga 2 17 Ge 0.1 18 Hf 0.2 19 Hg 0.0005 20 I 0.5 21 In 0.02 22 Li 1 23 Mn 10 24 Mo 0.2 25 N 20 26 Nb 2 27 Ni 2 28 P 10 29 Pb 2 30 Pd 0.0002 31 Pt 0.0001 32 Rb 5 33 S 30 34 Sb 0.05 35 Sc 1 36 Se 0.01 37 Sn 1 38 Sr 5 39 Ta 0.1 40 Te 0.01 41 Th 2 42 Ti 10 43 Tl 0.1 44 U 0.1 45 V 5 46 W 0.2 47 Zn 4 48 Zr 2 49 Y 1 50 La 1 51 Ce 1 52 Pr 0.1 53 Nd 0.1 54 Sm 0.1 55 Eu 0.1 56 Gd 0.1 57 Tb 0.1 58 Dy 0.1 59 Ho 0.1 60 Er 0.1 61 Tm 0.1 62 Yb 0.1 63 Lu 0.1 64 SiO2 0.05* 65 Al2O3 0.05* 66 TFe2O3 0.05* 67 MgO 0.05* 68 CaO 0.05* 69 Na2O 0.05* 70 K2O 0.05* 71 TC 0.1* 注:数据单位为μg/g,标注“*”单位为%。 表 8 分析方法的准确度和精密度要求
Table 8. Guidelines for analytical acuracy and precision
含量范围
(w)准确度
(|Δlg C|)精密度
(RSD)小于3倍检出限 ≤0.10 ≤17% 大于3倍检出限 ≤0.05 ≤10% 1%~5% ≤0.04 ≤8% >5% ≤0.02 ≤3% 注: $|\Delta \text{lg}\overline{C}\left| = \right|\text{lg}\overline{{{C}_{i}}}-\text{lg}{{C}_{s}}|;\text{RSD}=\frac{\sqrt{\frac{\sum\limits_{i=1}^{n}{{{({{C}_{i}}-{{C}_{s}})}^{2}}}}{n-1}}}{{{C}_{s}}}~\times 100$ ;
Ci为标准物质12次测量值的平均值;
Cs为标准物质的认定值;
Ci为标准物质的第i次测量值;
n为标准物质的测量次数12。表 9 实验室重复样和野外重复样相对误差要求
Table 9. Requirement for relative errors of laboratory replicate analysis and sampling duplicate samples
项目 实验室重复样 野外重复样 计算公式 $\begin{align} & \text{RD}=\frac{\left| {{C}_{1}}-{{C}_{2}} \right|}{\left( {{C}_{1}}+{{C}_{2}} \right)/2} \\ & \ \ \ \ \ \ \ \ \times 100% \\ \end{align}$ $\begin{align} & \text{RE}=\frac{\left| {{S}_{\text{o}}}-{{S}_{\text{d}}} \right|}{\left( {{S}_{\text{o}}}+{{S}_{\text{d}}} \right)/2} \\ & \ \ \ \ \ \ \ \ \ \times 100% \\ \end{align}$ 小于3倍检出限 ≤40% ≤50% 大于3倍检出限 ≤20% ≤25% 主量元素、铁族元素和
重金属元素≤20%,
中位数≤10%≤25%,
中位数≤12.5%注:RD—实验室重复样相对误差; RE—野外采样相对误差; C1—实验室重复样第一次分析; C2—实验室重复样第二次分析; So—野外原始样; Sd—野外重复样。 -
[1] Darnley A G, Björklund A, Bølviken B, et al.A global geochemical database for environmental and resource management: Final report of IGCP Project 259, Earth Sciences, 19, UNESCO Publishing, Paris, 1995, 122 pp.http://www.globalgeochemicalbaselines.eu/wp-content/uploads/2012/07/BlueBook_GGDIGCP259.pdf (last access 5 March 2014).
[2] Smith D B, Wang X, Reeder S, et al.The IUGS/IAGC task group on global geochemical baselines[J].Earth Science Frontiers, 2012, 19:1-6. http://cn.bing.com/academic/profile?id=c1b7b8c9250a4a4b4e1d079fedcdb532&encoded=0&v=paper_preview&mkt=zh-cn
[3] 王学求.全球地球化学基准:了解过去, 预测未来[J].地学前缘, 2012, 19(3):7-18. http://d.old.wanfangdata.com.cn/Periodical/dxqy201203003
Wang X Q.Global geochemical baselines:Understanding the past and predicting the future[J].Earth Science Frontiers, 2012, 19(3):7-18. http://d.old.wanfangdata.com.cn/Periodical/dxqy201203003
[4] 王学求, 周建, 徐善法, 等.全国地球化学基准网建立与土壤地球化学基准值特征[J].中国地质, 2016, 43(5):1469-1480. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201605001
Wang X Q, Zhou J, Xu S F, et al.China soil geochemical baselines networks:Data characteristics[J].Geology in China, 2016, 43(5):1469-1480. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201605001
[5] 王学求, 谢学锦, 张本仁, 等.地壳全元素探测——构建"化学地球"[J].地质学报, 2010, 84(6):854-864. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201006009
Wang X Q, Xie X J, Zhang B R, et al.China geochemical probe:Making "Geochemical Earth"[J].Acta Geological Sinica, 2010, 84(6):854-864. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201006009
[6] 聂兰仕, 王学求, 徐善法, 等.全球地球化学数据管理系统:"化学地球"软件研制[J].地学前缘, 2012, 5(3):43-48. http://d.old.wanfangdata.com.cn/Periodical/dxqy201203006
Nie L S, Wang X Q, Xu S F, et al.Global geochemical data management:Development of chemical earth software[J].Earth Science Frontiers, 2012, 5(3):43-48. http://d.old.wanfangdata.com.cn/Periodical/dxqy201203006
[7] Darnley A G.International geochemical mapping:A new global project[J].Journal of Geochemical Exploration, 1990, 39:1-13. doi: 10.1016/0375-6742(90)90066-J
[8] Xie X, Cheng H.The suitability of floodplain sediment as global sampling medium: Evidence from China.In: G.F.Taylor and R.Davy (Eds.), Geochemical Exploration 1995[J].Journal of Geochemical Exploration, 1997, 58: 51-62.
[9] Wang X Q.The CGB sampling team, China geochemical baselines:Sampling methodology[J].Journal of Geochemical Exploration, 2015, 148:25-39. doi: 10.1016/j.gexplo.2014.05.018
[10] Wang X Q, Liu X M, Han Z R, et al.Concentration and distribution of mercury in drainage catchment sediment and alluvial soil of China[J].Journal of Geochemical Exploration, 2015, 154:32-48. doi: 10.1016/j.gexplo.2015.01.008
[11] 王学求, 周建, 徐善法, 等, 全国地球化学基准网建立与地球化学基准值特征[J].中国地质, 2016, 43(5):1469-1480. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201605001
Wang X Q, Zhou J, Xu S F, et al.China soil geochemical baselines networks:Data characteristics[J].Geology in China, 2016, 43(5):1469-1480. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201605001
[12] Salminen R, Tarvainen T, Demetriades A, et al.FOREGS Geochemical Mapping Field Manual.Geological Survey of Finland, Espoo, Guide 47, 36 pp., 1 Appendix.http://arkisto.gsf.fi/op/op47/op47.pdf (last access 5 March 2014).1998.
[13] Salminen R (Chief Editor), Batista M J, Bidovec M, et al.FOREGS Geochemical Atlas of Europe, Part 1—Background information, methodology and maps.Geological Survey of Finland, Espoo, 2005, 526 pp.http://weppi.gtk.fi/publ/foregsatlas/ (last access 5 March 2014).
[14] Reimann C, Demetriades A, Eggen O A, et al.Euro-GeoSurveys Geochemistry Expert Group.The EuroGeoSurveys Geochemical mapping of agricultural and grazing land soils project (GEMAS)—Evaluation of quality control results of total C and S, total organic carbon (TOC), cation exchange capacity (CEC), XRF, pH, and particle size distribution (PSD) analyses.NGU Report 2011, 043, 90 pp., http://www.ngu.no/upload/Publikasjoner/Rapporter/2011/2011_043.pdf (last access 5 March 2014).
[15] Reimann C, Demetriades A, Birke M, et al.EuroGeoSurveys Geochemistry Expert Group.The EuroGeoSurveys Geochemical Mapping of Agricultural and grazing land Soils project (GEMAS)—Evaluation of quality control results of particle size estimation by MIR prediction, Pb-isotope and MMI® extraction analyses and results of the GEMAS ring test for the standards Ap and Gr.NGU Report 2012, 051, 136 pp., http://www.ngu.no/upload/Publikasjoner/Rapporter/2012/2012_051.pdf (last access 5 March 2014).
[16] Reimann C, Birke M, Demetriades A, et al.Chemistry of Europe's agricultural soils—Part A: Methodology and interpretation of the GEMAS data set.Geologisches Jahrbuch (Reihe B), Schweizerbarth, Hannover, 2014a, 528 pp.http://www.schweizerbart.de/publications/detail/isbn/9783510968466 (last access 5 March 2014).
[17] Reimann C, Birke M, Demetriades A, et al.Chemistry of Europe's agricultural soils—Part B: General background information and further analysis of the GEMAS data set.Geologisches Jahrbuch (Reihe B), Schweizerbarth, Hannover, 2014b, 352 pp.http://www.schweizerbart.de/publications/detail/isbn/9783510968473/Geolo-gisches_Jahrbuch_Reihe_B_Heft_B103_Chemistry_ (last access 5 March).
[18] Smith D B.Preface:Geochemical studies of North American soils:Results from the pilot study phase of the North American Soil Geochemical Landscapes Project[J].Applied Geochemistry, 2009, 24:1355-1356. doi: 10.1016/j.apgeochem.2009.04.006
[19] Smith D B, Cannon W F, Woodruff L G, et al.History and progress of the North American Soil Geochemical Landscapes Project, 2001—2010[J].Earth Science Frontiers, 2012, 19:19-32. http://d.old.wanfangdata.com.cn/Periodical/dxqy201203004
[20] Smith D B, Cannon W F, Woodruff L G, et al.Geo-chemical and mineralogical data for soils of the conterminous United States.U.S.Geological Survey Data Series, 2013, 801, 19.http://pubs.usgs.gov/ds/801/ (last access 5 March 2014).
[21] Caritat P, de Cooper M.National Geochemical Survey of Australia: The Geochemical Atlas of Australia.Geoscience Australia, Record 2011/20 (2 Volumes), 557 pp.http://www.ga.gov.au/energy/projects/national-geochemical-survey/atlas.html (last access 5 March 2014).
[22] Caritat de P, Reimann C, Smith D B, et al.Chemical elements in the environment:Multi-element geochemical datasets from continental-to national-scale surveys on four continents[J].Applied Geochemistry, 2018, 89:150-159. doi: 10.1016/j.apgeochem.2017.11.010
[23] 王学求.透视全球资源与环境, 实施"化学地球"国际大科学计划[J].中国地质, 2017, 44(1):201-202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201701020
Wang X Q.The initiative for International Cooperation Project of Mapping Chemical Earth for sustaining global resources and environments[J].Geology in China, 2017, 44(1):201-202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201701020
[24] Xie X J.Analytical requirements in international geo-chemical mapping[J].Analyst, 1995, 120:1497-1504. doi: 10.1039/an9952001497
[25] Reimann C, Demetriades A, Eggen O A, et al.The EuroGeoSurveys Geochemical Mapping of Agricultural and Grazing Land Soils Project (GEMAS)—Evaluation of Quality Control Results of Aqua Regia Extraction Analysis.Norges Geologiske UndersØkelse Report, 2009.049, 94 pp., http://www.ngu.no/upload/Publikasjoner/Rapporter/2009/2009_049.pdf (last access 14 July 2013).
[26] Yao W S, Xie X J, Wang X Q.Comparison of results analyzed by Chinese and European laboratories for FOREGS geochemical baselines mapping samples[J].Geoscience Frontiers, 2012, 2(2):247-259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy-e201102012
[27] Liu X M, Wang X Q, Patrice de Caritat, et al.Comparison of data sets obtained by global-scale geochemical sampling in Australia, China and Europe[J].Journal of Geochemical Exploration, 2015, 148:1-11. doi: 10.1016/j.gexplo.2013.11.005
[28] 王学求, 谢学锦.金的勘查地球化学[M].济南:山东科学技术出版社, 2000.
Wang X Q, Xue X J.Exploration Geochemistry of Gold[M].Jinan: Shandong Science and Technology Press, 2000.
[29] 吕贻忠.土壤学[M].北京:中国农业出版社, 2006.
Lü Y Z. Pedology[M].Beijing:China Agriculture Pres, 2006.
[30] 方如康.环境学词典[M].北京:科学出版社, 2003.
Fang R K.Dictionary of Environmental Science[M].Beijing:Science Press, 2003.
[31] 张勤, 白金峰, 王烨.地壳全元素配套分析方案及分析质量监控系统[J].地学前缘, 2012, 19(3):33-42. http://d.old.wanfangdata.com.cn/Conference/7610888
Zhang Q, Bai J F, Wang Y.Analytical scheme and quality monitoring system for China geochemical baselines[J].Earth Science Frontiers, 2012, 19(3): 33-42. http://d.old.wanfangdata.com.cn/Conference/7610888
[32] Xie X J, Yan M C, Li L Z, et al.Usable values for Chinese standard reference samples of stream sediment, soil and rocks GSD9-12, GSS1-8 and GSR1-6[J].Geostandards Newsletter, 1985, 9:227-280. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-908X.1985.tb00458.x
[33] 刘妹, 顾铁新, 潘含江, 等.泛滥平原沉积物标准物质研制[J].岩矿测试, 2018, 37(5):558-571. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801080002
Liu M, Gu T X, Pan H J, et al.Preparation of seven certified reference materials for floodplain sediments[J].Rock and Mineral Analysis, 2018, 37(5):558-571. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801080002
-