Determination of Antimony in Antimony Ores by Inductively Coupled Plasma-Optical Emission Spectrometry with Microwave Digestion
-
摘要: 采用王水溶解锑矿石常出现溶矿不彻底、提取过程中锑水解的问题,导致测定结果偏低;虽然原子荧光光谱法广泛应用于锑的测定,但是该方法由于仪器线性范围窄,对于高含量锑(>5%)的测定容易引入较大稀释误差。本文对样品采用氢氟酸-硝酸-盐酸混合酸溶后,在提取过程中加入酒石酸与锑络合,充分抑制了锑的水解。实验结果表明:采用氢氟酸、硝酸、盐酸混合酸体系的溶矿方式,能够有效分解矿石中的硅酸盐组分,使溶解更加彻底,锑的测定结果优于王水溶矿,且检出限更低(1.10μg/g);通过酒石酸与锑的络合及盐酸对锑水解的抑制,锑的测定结果优于王水介质及盐酸介质的结果,且方法精密度(RSD,n=6)为0.11%~1.11%,较其他介质更稳定。在ICP-OES分析中通过对锑元素分析谱线的优选,可以获得更宽的线性范围,从而实现了对较高含量锑的准确测定。本方法能快速、有效溶解锑矿石并避免锑元素水解,经国家一级标物验证,所得结果与认定值相符,适用于分析锑矿石中含量范围在0.7%~40%的锑。
-
关键词:
- 锑矿石 /
- 锑 /
- 氢氟酸-硝酸-盐酸酸溶 /
- 常压密闭微波消解 /
- 酒石酸-盐酸提取 /
- 电感耦合等离子体发射光谱法
Abstract:BACKGROUNDThe dissolution of antimony ore by aqua regia is often incomplete and antimony is easy to hydrolyze in the process of extraction, which leads to inaccurate results. Although atomic fluorescence spectrometry has been widely used in the determination of antimony, it is easy to introduce large dilution error for the determination of high-content antimony (>5%) due to the narrow linear range of the instrument. OBJECTIVESTo solve the problem of incomplete dissolution of antimony ores and hydrolysis of antimony in the extraction process, and establish a new method with wider linear range for determination of antimony in antimony ores. METHODSBased on inductively coupled plasma-optical emission spectrometry (ICP-OES), the antimony ore was fully dissolved by hydrofluoric acid, nitric acid and hydrochloric acid, and the hydrolysis of antimony was fully inhibited by the complexation of tartaric acid and antimony. RESULTSThe results showed that the solution of the mixed hydrofluoric acid, nitric acid and hydrochloric acid can effectively decompose the silicate components in antimony ores, which can make antimony ores dissolve more completely. The determination resultof antimony was better than that of aqua regia, and the detection limit was lower (1.10μg/g). The determination result of antimony obtained by the mixed extraction method of tartaric acid and hydrochloric acid was better than that of aqua regia. The precision of the method was 0.11%-1.11%, which was more stable than that of hydrochloric acid or aqua regia. By using an inductively coupled plasma emission spectrometer, a wider linear range can be obtained by optimizing the spectrum of antimony element analysis, therefore realizing the accurate determination of high-content antimony. CONCLUSIONSThis method can dissolve antimony ore quickly and effectively, and avoid the hydrolysis of antimony. The method is confirmed by national first grade standard materials, and the result is in agreement with the certified values. This method is suitable for the analysis of 0.7%-40% antimony in antimony ores. -
-
表 1 微波消解升温程序
Table 1. Program of microwave digestion
步骤 升温时间(min) 目标温度(℃) 保持时间(min) 功率(W) 1 5 100 0 1200 2 5 120 3 1200 3 5 130 25 1200 表 2 不同提取介质的测定结果
Table 2. Analytical results of Sb in sample pretreated with different volumetric methods
标准物质编号 Sb认定值(%) 定容方式1 (5%酒石酸与5%盐酸混合溶液) 定容方式2 (15%王水定容) 定容方式3 (20%盐酸定容) 4次测定值(%) 平均值(%) 4次测定值(%) 平均值(%) 4次测定值(%) 平均值(%) GBW07175 18.97 19.01 18.99
19.04 19.0019.01 16.24 16.31
16.13 16.2016.22 18.64 18.57
18.69 18.6218.63 GBW07176 39.7 39.74 39.81
39.77 39.7339.76 33.57 33.49
33.26 33.3833.43 39.36 39.31
39.24 39.3839.32 GBW07279 6.26 6.28 6.31
6.27 6.296.29 5.31 5.46
5.37 5.345.37 5.97 5.89
5.91 5.845.90 GBW07280 1.81 1.83 1.84
1.80 1.821.82 1.44 1.51
1.55 1.531.51 1.64 1.59
1.61 1.631.62 表 3 不同消解方式下锑的测定结果对比
Table 3. Comparison of the analytical results of Sb pretreated with different digestion methods
溶样方式 用酸量(mL) 溶样温度(℃) 溶样时间(h) Sb测定值(%) 敞口酸溶 26 160 4 18.93 常压密闭微波消解 8 130 1.5 18.96 高压密闭消解 6 180 6 18.94 表 4 方法准确度和精密度
Table 4. Accuracy and precision tests of the method
标准物质编号 Sb含量(%) 相对误差(%) RSD(%) 分次测定值 平均值 认定值 GBW07175 19.01 19.04 18.98
19.00 18.99 19.0219.01 18.97 0.21 0.11 GBW07176 39.81 39.74 39.74
39.82 39.77 39.8039.79 39.7 0.23 0.11 GBW07279 6.31 6.29 6.24
6.28 6.30 6.346.29 6.26 0.48 0.53 GBW07280 1.77 1.73 1.76
1.74 1.72 1.731.74 1.81 0.13 1.11 表 5 方法加标回收率
Table 5. Spiked recovery of the method
项目 Sb测定值(%) 样品1 样品2 样品3 称样量(g) 0.1000 0.1000 0.1000 溶液体积(mL) 100 100 100 加标前样品溶液测定浓度(μg/mL) 8.74 15.31 32.60 加标前样品溶液锑含量(μg) 874 1531 3260 锑标准溶液浓度(μg/mL) 100 100 100 加标体积(mL) 10 20 40 加标量(μg) 1000 2000 4000 加标后样品溶液测定浓度(μg/mL) 18.91 35.22 72.89 加标后样品溶液锑含量(μg) 1891 3522 7289 加标回收率(%) 102.0 99.6 101.0 -
[1] 罗英杰, 王小烈, 柳群义, 等.中国未来锑资源需求预测[J].中国矿业, 2017, 26(3):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201703001
Luo Y J, Wang X L, Liu Q Y, et al.The future demand of antimony in China[J]. China Mining Magazine, 2017, 26(3):1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201703001
[2] 李皓, 张尼, 马熠罡.碱熔样电感耦合等离子体发射光谱法测定锑矿石中锑[J].化学分析计量, 2016, 25(2):69-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxfxjl201602031
Li H, Zhang N, Ma Y G.Determination of antimony in antimony ore by inductively coupled plasma emission spectrometry combined with alkali fusion pretreatment[J]. Chemical Analysis and Meterage, 2016, 25(2):69-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxfxjl201602031
[3] 孟郁苗, 胡瑞忠, 高剑峰, 等.锑的地球化学行为以及锑同位素研究进展[J].岩矿测试, 2016, 35(4):339-348. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.002
Meng Y M, Hu R Z, Gao J F, et al.Research progress on Sb geochemistry and Sb isotopes[J]. Rock and Mineral Analysis, 2016, 35(4):339-348. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.04.002
[4] 何贵, 韦平, 王禄军, 等.溶样方法对化探样品中砷锑测定的影响[J].黄金, 2013, 34(2):77-79. http://d.old.wanfangdata.com.cn/Periodical/huangj201302020
He G, Wei P, Wang L J, et al.Impact of dissolving reagent on determination of arsenic and stibium of geochemical samples[J]. Gold, 2013, 34(2):77-79. http://d.old.wanfangdata.com.cn/Periodical/huangj201302020
[5] 魏轶, 窦向丽, 巨力佩, 等.四酸溶解-电感耦合等离子体发射光谱法测定金锑矿和锑矿石中的锑[J].岩矿测试, 2013, 32(5):715-718. http://www.ykcs.ac.cn/article/id/393aaaac-cb25-48c2-9c09-81a82f1e1b97
Wei Y, Dou X L, Ju L P, et al.Determination of antimony in gold-antimony ore and antimony ore by inductively coupled plasma-atomic emission spectrometry with four acids dissolution[J]. Rock and Mineral Analysis, 2013, 32(5):715-718. http://www.ykcs.ac.cn/article/id/393aaaac-cb25-48c2-9c09-81a82f1e1b97
[6] 高春英, 王琳, 范世华.自动点位滴定法测定锑矿石中锑[J].分析试验室, 2016, 35(12):1441-1444.
Gao C Y, Wang L, Fan S H.Determination of total antimony in antimony ores with an automatic potentiometric titration method[J]. Chinese Journal of Analysis Laboratory, 2016, 35(12):1441-1444.
[7] 高云, 宋召霞.硫化钠还原-硫酸铈滴定法测定含锑金精矿中锑[J].冶金分析, 2017, 37(3):39-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201703006
Gao Y, Song Z X.Determination of antimony in gold concentrate containing antimony by cerium sulfate titrimetry with sodium sulfide reduction[J]. Metallurgical Analysis, 2017, 37(3):39-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201703006
[8] 陈珍娥, 马超, 张海.分光光度计的改装及在锑测定中的应用[J].冶金分析, 2017, 37(5):77-81. http://d.old.wanfangdata.com.cn/Periodical/yjfx201705016
Chen Z E, Ma C, Zhang H.Modification of spectrophotometer and its application in determination of antimony[J]. Metallurgical Analysis, 2017, 37(5):77-81. http://d.old.wanfangdata.com.cn/Periodical/yjfx201705016
[9] Unutkan T, Koyuncu I, Diker C, et al.Accurate and sensitive analytical strategy for the determination of antimony:Hydrogen assisted t-shaped slotted quartz tube-atom trap-flame atomic absorption spectrometry[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(1):122-127.
[10] 刘志仓, 郭国涛, 王宏强, 等.火焰原子吸收法测定矿石中锑元素的方法试验[J].中国金属通报, 2018(4):198, 200. http://d.old.wanfangdata.com.cn/Periodical/zgjstb201804113
Liu Z C, Guo G T, Wang H Q, et al.Determination of antimony in ores by flame atomic absorption spectrometry[J]. China Metal Bulletin, 2018(4):198, 200. http://d.old.wanfangdata.com.cn/Periodical/zgjstb201804113
[11] Zurynková P, Dědina J, Kratzer J.Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer[J]. Analytica Chimica Acta, 2018(1010):11-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=88872ee60aa1a9972a768b6a8ad4badb
[12] Mattiazzi P, Bohrer D, Viana C, et al.Determination of antimony in pharmaceutical formulations and beverages using high-resolution continuum-source graphite furnace atomic absorption spectrometry[J]. Journal of AOAC International, 2017, 100(3):737-742. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5ccf79cff7f4343e332859fb9aeabdec
[13] 袁永海, 尹昌慧, 元志红, 等.氢化物发生-原子荧光光谱法同时测定锡矿石中砷和锑[J].冶金分析, 2016, 36(3):39-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201603009
Yuan Y H, Yin C H, Yuan Z H, at al.Determination of arsenic and antimony in tin ore by hydride generation-atomic fluorescence spectrometry[J]. Metallurgical Analysis, 2016, 36(3):39-43. http://d.old.wanfangdata.com.cn/Periodical/yjfx201603009
[14] 李颜君, 杨占菊, 董更福, 等.氢化物发生-原子荧光光谱法同时测定铅锭中砷锑[J].冶金分析, 2017, 37(11):75-79. http://d.old.wanfangdata.com.cn/Periodical/yjfx201711015
Li Y J, Yang Z J, Dong G F, et al.Simultaneous determination of arsenic and antimony in lead ingot by hydride generation-atomic fluorescence spectrometry[J]. Metallurgical Analysis, 2017, 37(11):75-79. http://d.old.wanfangdata.com.cn/Periodical/yjfx201711015
[15] 李美秀, 齐少华.微波消解-双通道原子荧光光谱法同时测定土壤中的硒和锑[J].化学分析计量, 2018, 27(6):81-86. http://d.old.wanfangdata.com.cn/Periodical/hxfxjl201806020
Li M X, Qi S H.Simultaneous determination of selenium and antimony in soil by microwave digestion and double channel atomic fluorescence spectrometry[J]. Chemical Analysis and Meterage, 2018, 27(6):81-86. http://d.old.wanfangdata.com.cn/Periodical/hxfxjl201806020
[16] Dos S, Gerffeson S, Silva L, et al.Analytical strategies for determination and environmental impact assessment of inorganic antimony species in natural waters using hydride generation atomic fluorescence spectrometry (HG-AFS)[J]. Journal of the Brazilian Chemical Society, 2018, 29(1):185-190.
[17] 刘江斌, 余宇, 段九存, 等.熔融制样X射线荧光光谱法测定锑矿石中的锑和14种微量元素[J].岩矿测试, 2014, 33(6):828-833. http://www.ykcs.ac.cn/article/id/c32669d9-7be4-483c-81cf-b28e4b5ce66e
Liu J B, Yu Y, Duan J C, et al.Determination of antimony and 14 trace elements in antimony ores by X-ray fluorescence spectrometry with fusion sample preparation[J]. Rock and Mineral Analysis, 2014, 33(6):828-833. http://www.ykcs.ac.cn/article/id/c32669d9-7be4-483c-81cf-b28e4b5ce66e
[18] 修凤凤, 樊勇, 李俊雨, 等.粉末压片-波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素[J].岩矿测试, 2018, 37(5):526-532. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704170061
Xiu F F, Fan Y, Li J Y, et al.Determination of 18 minor elements in the structural superimposed halo samples from gold deposits by wavelength dispersive X-ray fluorescence spectrometry with pressed-powder pellets[J]. Rock and Mineral Analysis, 2018, 37(5):526-532. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704170061
[19] 王干珍, 王子杰, 郭腊梅, 等.稀释剂粉末压片-X射线荧光光谱法测定锑矿石中锑及主量组分[J].中国无机分析化学, 2016, 6(1):22-25. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201601006
Wang G Z, Wang Z J, Guo L M, et al.Determination of antimony and main components in antimony ores by X-ray fluorescence spectrometer with diluent-pressed powder pellet[J]. Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1):22-25. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201601006
[20] 黎香荣, 唐梦奇, 袁焕明, 等.熔融制样-X射线荧光光谱法测定锑矿石中主次成分[J].冶金分析, 2014, 34(7):38-42. http://d.old.wanfangdata.com.cn/Periodical/yjfx201407006
Li X R, Tang M Q, Yuan H M, et al.Determination of major and minor components in antimony ore by X-ray fluorescence spectrometry with fusion sample preparation[J]. Metallurgical Analysis, 2014, 34(7):38-42. http://d.old.wanfangdata.com.cn/Periodical/yjfx201407006
[21] 高永宏, 刘江斌, 祝建国. X射线荧光光谱法同时快速测定锑矿石中伴生及有害元素[J].分析测试技术与仪器, 2014, 20(2):98-102. http://d.old.wanfangdata.com.cn/Periodical/fxcsjsyyq201402007
Gao Y H, Liu J B, Zhu J G.Simultaneous rapid determination of associated and harmful elements in antimony ores by X-ray fluorescence spectrometry[J]. Analysis and Testing Technology and Instruments, 2014, 20(2):98-102. http://d.old.wanfangdata.com.cn/Periodical/fxcsjsyyq201402007
[22] 严慧, 王干珍, 汤行, 等.电感耦合等离子体发射光谱法同时测定锑矿石中14种元素的含量[J].理化检验(化学分册), 2017, 53(1):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx201701007
Yan H, Wang G Z, Tang X, et al.Simultaneous determination of 14 elements in antimony ores by inductively coupled plasma-atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(1):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lhjy-hx201701007
[23] 魏灵巧, 付胜波, 罗磊, 等.电感耦合等离子体发射光谱法多向观测同时测定锑矿石中锑砷铜铅锌[J].岩矿测试, 2012, 31(6):967-970. http://www.ykcs.ac.cn/article/id/ykcs_20120610
Wei L Q, Fu S B, Luo L, et al.Simultaneous determination of Sb, As, Cu, Pb and Zn in antimony ores by inductively coupled plasma-atomic emission spectrometry with a multi-directional observation mode[J]. Rock and Mineral Analysis, 2012, 31(6):967-970. http://www.ykcs.ac.cn/article/id/ykcs_20120610
[24] 任志海, 牟思名, 程功, 等.王水密闭溶矿-电感耦合等离子体原子发射光谱法测定锑矿石中的锑[J].中国无机分析化学, 2014, 4(1):53-55. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201401014
Ren Z H, Mu S M, Cheng G, et al.Determination of Sb in stibium ore by inductively coupled plasma-atomic emission spectrometry with closed digestion using aqua regia[J]. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1):53-55. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201401014
[25] 张世龙, 吴周丁, 刘小玲, 等.电感耦合等离子体原子发射光谱法测定多金属矿石中铁、铜、铅、锌、砷、锑、钼和镉的含量[J].理化检验(化学分册), 2015, 51(7):930-933. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201507009
Zhang S L, Wu Z D, Liu X L, et al.ICP-AES Determination of Fe, Cu, Pb, Zn, As, Sb, Mo and Cd in multi-metal ores[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2015, 51(7):930-933. http://d.old.wanfangdata.com.cn/Periodical/lhjy-hx201507009
[26] 陈丽珠, 曹胜.电感耦合等离子体发射光谱(ICP-OES)法测定矿石中锑[J].中国无机分析化学, 2017, 7(4):60-63. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201704013
Chen L Z, Cao S.Determination of antimony in ores by inductively coupled plasma optical emission spectrometry (ICP-OES)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(4):60-63. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201704013
[27] 冯源强, 王烨彬, 苏思强, 等.电感耦合等离子体发射光谱法测定锑矿石中的锑[J].广州化工, 2017, 45(18):98-100. http://d.old.wanfangdata.com.cn/Periodical/gzhg201718037
Feng Y Q, Wang Y B, Su S Q, et al.Determination of Sb in antimony ores by inductively coupled plasma-atomic emission spectrometry[J]. Guangzhou Chemical Industry, 2017, 45(18):98-100. http://d.old.wanfangdata.com.cn/Periodical/gzhg201718037
[28] Chen S, Zhu S, Lu D.Dispersive micro-solid phase extraction coupled with dispersive liquid-liquid microextraction for speciation of antimony in environmental water samples by electrothermal vaporization ICP-MS[J]. Atomic Spectroscopy, 2018, 39(2):55-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2a36ce8f7f0fc39dc1352779e43f1aca
[29] Dundar M S, Kaptan F, Caner C, et al.Speciation of antimony using dithizone ligand via cloud point extraction and determination by USN-ICP-OES[J]. Atomic Spectroscopy, 2018, 39(3):100-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fa813790bc0446bbdbcad6114b7378bf
[30] 张志刚, 刘凯, 陈泓, 等.酒石酸络合掩蔽锑-氢醌容量法测定锑矿石样品中的常量金[J].岩矿测试, 2015, 34(4):454-458. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.04.013
Zhang Z G, Liu K, Chen H, et al.Determination of gold in antimony ores by hydroquinone volumetric method with antimony tartrate as complexing and masking agent[J]. Rock and Mineral Analysis, 2015, 34(4):454-458. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2015.04.013
[31] 曾昭文, 郑成, 毛桃嫣, 等.微波在化工过程中的研究及应用进展[J].化工学报, 2019, 70(增刊):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb2019z1001
Zeng Z W, Zheng C, Mao T Y, et al.Progress in research and application of microwave in chemical process[J]. CIESC Journal, 2019, 70(Supplement):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb2019z1001
[32] 童兵, 许虹, 刘陟娜.全球锑矿资源分布现状及对中国勘察投资建议[J].中国矿业, 2017, 26(A1):5-10.
Tong B, Xu H, Liu Z N.Distribution of global antimony resources and proposals of exploration investment for China[J]. China Mining Magazine, 2017, 26(A1):5-10.
-