中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

土壤中铁元素对铬元素p-XRF测定准确度的影响与校正

唐晓勇, 倪晓芳, 商照聪. 土壤中铁元素对铬元素p-XRF测定准确度的影响与校正[J]. 岩矿测试, 2020, 39(3): 467-474. doi: 10.15898/j.cnki.11-2131/td.201911200161
引用本文: 唐晓勇, 倪晓芳, 商照聪. 土壤中铁元素对铬元素p-XRF测定准确度的影响与校正[J]. 岩矿测试, 2020, 39(3): 467-474. doi: 10.15898/j.cnki.11-2131/td.201911200161
Xiao-yong TANG, Xiao-fang NI, Zhao-cong SHANG. Effect and Correction of Iron in Soil on Accuracy of Chromium Determination by Portable X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(3): 467-474. doi: 10.15898/j.cnki.11-2131/td.201911200161
Citation: Xiao-yong TANG, Xiao-fang NI, Zhao-cong SHANG. Effect and Correction of Iron in Soil on Accuracy of Chromium Determination by Portable X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(3): 467-474. doi: 10.15898/j.cnki.11-2131/td.201911200161

土壤中铁元素对铬元素p-XRF测定准确度的影响与校正

  • 基金项目:
    上海市科学技术委员会项目“污染场地重金属快速检测技术及质量监控评价系统研发与示范应用”(18DZ12041);上海市科学技术委员会项目“上海市危险化学品分类鉴定及应急救援检测专用技术服务平台”(17DZ2290800)
详细信息
    作者简介: 唐晓勇, 硕士研究生, 从事p-XRF对土壤中重金属测定的研究工作。E-mail:xytang18721377170@163.com
    通讯作者: 倪晓芳, 博士, 高级工程师, 长期从事土壤调查、修复工作。E-mail:nxf_sds@163.com
  • 中图分类号: O657.34

Effect and Correction of Iron in Soil on Accuracy of Chromium Determination by Portable X-ray Fluorescence Spectrometry

More Information
  • 便携式X射线荧光光谱仪(p-XRF)能够快速检测土壤中的铬元素,但由于土壤成分复杂、基体效应不明,导致其检测准确度较低。铁元素作为土壤基体中的主量元素,在不同类型土壤中含量变化范围大,是影响铬元素p-XRF测定准确度的主要元素之一,深入研究铁元素对铬元素荧光强度的影响有助于提高p-XRF测定土壤中铬元素的准确度。本文以人工配置的铬-铁土壤样品研究铬元素荧光强度与铬元素含量和铁元素含量的变化关系,采用经验公式校正铁元素对铬元素p-XRF分析准确度的影响。结果表明:土壤样品中的铁元素含量固定不变时,铬元素的含量与其相应的特征X射线荧光强度呈线性变化,相关系数均在0.9990以上,且铬元素荧光强度的增长速率随着土壤中铁元素含量的增加而增大;另外通过对同一铬含量、不同铁含量土壤样品的研究,验证了铁元素对铬元素的荧光增强效应,并发现该增强效应还与铁、铬元素的相互作用有关。结合铬、铁元素基体效应研究结果,本文建立了铁元素对铬元素p-XRF测定的校正方程式,相比于普通的线性回归,该方法的相关系数从0.9011提高到了0.9986,硅藻土样品的p-XRF分析平均相对误差从21.94%下降至2.52%,实际土壤样品的p-XRF分析平均相对误差从51.02%下降至5.21%。
  • 加载中
  • 图 1  不同铁含量下,铬含量与铬的荧光强度变化关系

    Figure 1. 

    图 2  (a) 铬元素的特征X射线荧光强度与铁含量的关系;(b)拟合曲线斜率与铬元素含量的关系

    Figure 2. 

    图 3  铬元素的线性回归分析结果

    Figure 3. 

    表 1  p-XRF仪器工作条件

    Table 1.  Working parameters of the p-XRF instrument

    元素 分析线 准直器(μm) 探测器 电压(kV) 电流(mA) 采样间隔(keV)
    Cr 150 SDD 45 0.2 0.02
    Fe 150 SDD 45 0.2 0.02
    注:采样间隔即分辨率,表示每0.02keV能量记录一次荧光强度。
    下载: 导出CSV

    表 2  ICP-OES仪器工作条件

    Table 2.  Working parameters of the ICP-OES instrument

    工作参数 设定条件
    射频功率 1150W
    冷却气(Ar)流量 12.0L/min
    辅助气(Ar)流量 0.5L/min
    雾化气(Ar)流量 0.70L/min
    样品泵冲洗泵速 100r/min
    分析泵速 50r/min
    泵稳定时间 5s
    总采集时间 20s
    下载: 导出CSV

    表 3  两种校正方法的准确度对比

    Table 3.  Comparison of accuracy of two correction methods

    样品编号 Cr(mg/kg) 相对误差(%) Cr(mg/kg) 相对误差(%)
    ICP-OES法 p-XRF一维线性回归校正结果 ICP-OES法 p-XRF本法校正结果
    硅藻土-1 1154.19 858.27 25.64 1154.19 1135.85 1.59
    硅藻土-2 597.17 493.38 17.38 597.17 602.00 0.81
    硅藻土-3 1424.00 1407.47 1.16 1424.00 1446.26 1.56
    硅藻土-4 890.00 991.73 11.43 890.00 897.22 0.81
    硅藻土-5 301.28 464.25 54.09 301.28 277.72 7.82
    平均预测相对误差(%) 21.94 平均预测相对误差(%) 2.52
    样品编号 Cr(mg/kg) 相对误差(%) Cr(mg/kg) 相对误差(%)
    ICP-OES法 p-XRF一维线性回归校正结果 ICP-OES法 p-XRF本法校正结果
    潮土 37.56 -29.22 177.80 37.56 38.61 2.80
    黑土 352.86 270.48 23.35 352.86 375.43 6.39
    砖红壤 719.81 931.76 29.45 719.81 752.27 4.51
    黄棕壤 1238.13 1102.35 10.97 1238.13 1341.72 8.37
    水稻土 1517.97 1312.55 13.53 1517.97 1578.04 3.96
    平均预测相对误差(%) 51.02 平均预测相对误差(%) 5.21
    下载: 导出CSV
  • [1]

    王晶晶, 范纯.X射线荧光光谱法测定锌铁合金镀层铁含量的影响因素探讨[J].冶金分析, 2019, 39(10):49-54. http://d.old.wanfangdata.com.cn/Periodical/yjfx201910009

    Wang J J, Fan C.Discussion on influencing factors during the determination of iron content in galvanized coating of zinc-iron alloy by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2019, 39(10):49-54. http://d.old.wanfangdata.com.cn/Periodical/yjfx201910009

    [2]

    Byers H L, Mchenry L J, Grundl T J.XRF techniques to quantify heavy metals in vegetables at low detection limits[J]. Food Chemistry:X, 2019, 1:100001.

    [3]

    Sugiyama T, Uo M, Wada T, et al.Detection of trace metallic elements in oral lichenoid contact lesions using SR-XRF, PIXE, and XAFS[J]. Scientific Reports, 2015, 5:10672.

    [4]

    Moreno-Suarez A I, Ager F J, Rodriquez-Segovia C, et al.Feasibility of different cleaning methods for silver-copper alloys by X-ray fluorescence:Application to ancient Greek silver coins[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2016, 116:85-91.

    [5]

    Guerra M B B, de Almeida E, Carvalho G G A, et al.Comparison of analytical performance of benchtop and handheld energy dispersive X-ray fluorescence systems for the direct analysis of plant materials[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9):1667-1674. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f2fcea79d3470eeef0012dd11864f3bc

    [6]

    徐聪, 赵婷, 池海涛, 等.微波消解-ICP-MS法测定土壤及耕作物小麦中的8种重金属元素[J].中国测试, 2019, 45(5):85-92. http://d.old.wanfangdata.com.cn/Periodical/zgcsjs201905014

    Xu C, Zhao T, Chi H T, et al.Determination of eight kinds of heavy metals elements in cultivated soil and the wheat by microwave digestion-ICP-MS method[J]. China Measurement and Test, 2019, 45(5):85-92. http://d.old.wanfangdata.com.cn/Periodical/zgcsjs201905014

    [7]

    周宝宣, 袁琦.土壤重金属检测技术研究现状及发展趋势[J].应用化工, 2015, 44(1):131-138. http://d.old.wanfangdata.com.cn/Periodical/sxhg201501036

    Zhou B X, Yuan Q.Current situation and development trend of soil heavy metals detection[J]. Applied Chemical Industry, 2015, 44(1):131-138. http://d.old.wanfangdata.com.cn/Periodical/sxhg201501036

    [8]

    朱锋, 胡星云, 郭照冰, 等.快速消解测定土壤中金属元素[J].分析试验室, 2019, 38(8):906-911. http://d.old.wanfangdata.com.cn/Periodical/qgsj201719056

    Zhu F, Hu X Y, Guo Z B, et al.Determination of heavy metals in soil by rapid digestion[J]. Chinese Journal of Analysis Laboratory, 2019, 38(8):906-911. http://d.old.wanfangdata.com.cn/Periodical/qgsj201719056

    [9]

    田志仁, 封雪, 姜晓旭, 等.生态环境监测工作中应用AAS/AFS和XRF法测定土壤重金属数据质量评价[J].岩矿测试, 2019, 38(5):479-488. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201811080119

    Tian Z R, Feng X, Jiang X X, et al.Evaluation of data quality on the detection of heavy metals in soils by atomic absorption spectrometry or atomic fluorescence spectrometry and X-ray fluorescence spectrometry in ecological environment monitoring[J]. Rock and Mineral Analysis, 2019, 38(5):479-488. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201811080119

    [10]

    朱梦杰.便携式XRF测定仪在土壤检测中的应用及其影响因素[J].中国环境监测, 2019, 35(6):129-137. http://d.old.wanfangdata.com.cn/Periodical/zghjjc201906018

    Zhu M J.Application of portable XRF analyzer in soil detection and its influencing factors[J]. Environmental Monitoring in China, 2019, 35(6):129-137. http://d.old.wanfangdata.com.cn/Periodical/zghjjc201906018

    [11]

    邝荣禧, 胡文友, 何跃, 等.便携式X射线荧光光谱法(PXRF)在矿区农田土壤重金属快速检测中的应用研究[J].土壤, 2015, 47(3):589-595. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201503025

    Kuang R X, Hu W Y, He Y, et al.Application of portable X-ray fluorescence (PXRF) for rapid analysis of heavy metals in agricultural soils around mining area[J]. Soils, 2015, 47(3):589-595. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tr201503025

    [12]

    王世芳, 韩平, 王纪华, 等.X射线荧光光谱分析法在土壤重金属检测中的应用研究进展[J].食品安全质量检测学报, 2016, 7(11):4394-4400. http://d.old.wanfangdata.com.cn/Periodical/spaqzljcjs201611024

    Wang S F, Han P, Wang J H, et al.Application of X-ray fluorescence spectrometry on the detection of heavy metals in soil[J]. Journal of Food Safety and Quality, 2016, 7(11):4394-4400. http://d.old.wanfangdata.com.cn/Periodical/spaqzljcjs201611024

    [13]

    徐英岚.基于CNKI的X射线荧光光谱研究文献计量学分析[J].冶金分析, 2019, 39(10):1-7. http://d.old.wanfangdata.com.cn/Periodical/yjfx201910001

    Xu Y L.Bibliometric analysis on research trend of X-ray fluorescence spectrometry based on CNKI[J]. Metallurgical Analysis, 2019, 39(10):1-7. http://d.old.wanfangdata.com.cn/Periodical/yjfx201910001

    [14]

    于兆水, 张勤, 李小莉, 等.高压粉末制样波长色散X射线荧光光谱法测定生物样品中23种元素[J].岩矿测试, 2014, 33(6):844-848. http://www.ykcs.ac.cn/article/id/a3e0ee94-c290-48ad-ae4e-1f3b21dfcb30

    Yu Z S, Zhang Q, Li X L, et al.Determination of 23 elements in biological samples by wavelength dispersion X-ray fluorescence spectrometry with high pressure powder pelleting preparation[J]. Rock and Mineral Analysis, 2014, 33(6):844-848. http://www.ykcs.ac.cn/article/id/a3e0ee94-c290-48ad-ae4e-1f3b21dfcb30

    [15]

    李可及.熔融制样X射线荧光光谱法测定岩盐中的主量成分[J].岩矿测试, 2016, 35(3):290-294. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.03.012

    Li K J.Determination of major components in rock salt by X-ray fluorescence spectrometry with sample fusion[J]. Rock and Mineral Analysis, 2016, 35(3):290-294. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.03.012

    [16]

    李强, 张学华.粉末压片-X射线荧光光谱法快速分析多金属结核和富钴结壳中22种组分[J].冶金分析, 2014, 34(1):28-33. http://d.old.wanfangdata.com.cn/Periodical/yjfx201401005

    Li Q, Zhang X H.Rapid determination of twenty-two components in polymetallic nodule and cobalt-rich crusts by X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2014, 34(1):28-33. http://d.old.wanfangdata.com.cn/Periodical/yjfx201401005

    [17]

    杨桂兰, 倪晓芳, 张长波.基于便携式X射线荧光光谱法的土壤重金属快速检测[J].浙江农业学报, 2019, 31(11):1903-1908. http://d.old.wanfangdata.com.cn/Periodical/zjnyxb201911017

    Yang G L, Ni X F, Zhang C B.Rapid determination of heavy metals in soils based on portable X-ray fluorescence spectroscopy[J]. Acta Agriculturae Zhejiangensis, 2019, 31(11):1903-1908. http://d.old.wanfangdata.com.cn/Periodical/zjnyxb201911017

    [18]

    吉昂.X射线荧光光谱三十年[J].岩矿测试, 2012, 31(3):383-398. http://www.ykcs.ac.cn/article/id/ykcs_20120302

    Ji A.Development of X-ray fluorescence spectrometry in the 30 years[J]. Rock and Mineral Analysis, 2012, 31(3):383-398. http://www.ykcs.ac.cn/article/id/ykcs_20120302

    [19]

    杨桂兰, 商照聪, 李良君, 等.便携式X射线荧光光谱法在土壤重金属快速检测中的应用[J].应用化工, 2016, 45(8):1586-1591. http://d.old.wanfangdata.com.cn/Periodical/sxhg201608049

    Yang G L, Shang Z C, Li L J, et al.Application of portable-XRF spectrometry for rapid determination of common heavy metals in soil[J]. Applied Chemical Industry, 2016, 45(8):1586-1591. http://d.old.wanfangdata.com.cn/Periodical/sxhg201608049

    [20]

    殷惠民, 杜祯宇, 李玉武, 等.能量色散X射线荧光光谱仪和简化的基体效应校正模型测定土壤、沉积物中重金属元素[J].冶金分析, 2018, 38(4):1-10. http://d.old.wanfangdata.com.cn/Periodical/yjfx201804001

    Yin H M, Du Z Y, Li Y W, et al.Determination of heavy metal elements in soil and sediment by energy dispersive X-ray fluorescence spectrometer with simplified matrix effect correction model[J]. Metallurgical Analysis, 2018, 38(4):1-10. http://d.old.wanfangdata.com.cn/Periodical/yjfx201804001

    [21]

    倪子月, 陈吉文, 刘明博, 等.能量色散X射线荧光光谱法测定土壤中铬和锰的干扰校正[J].冶金分析, 2016, 36(10):10-14. http://d.old.wanfangdata.com.cn/Periodical/yjfx201610003

    Ni Z Y, Chen J W, Liu M B, et al.Interference correction of energy dispersive X-ray fluorescence spectrometric determination of chromium and manganese in soil[J]. Metallurgical Analysis, 2016, 36(10):10-14. http://d.old.wanfangdata.com.cn/Periodical/yjfx201610003

    [22]

    杨桂兰, 商照聪, 李良君, 等.基于均匀设计的土壤重金属PXRF检测方法优化研究[J].浙江农业学报, 2016, 28(12):2123-2129. http://d.old.wanfangdata.com.cn/Periodical/zjnyxb201612023

    Yang G L, Shang Z C, Li L J, et al.Application of uniform design method in optimizing PXRF determination methods of heavy metals in soil[J]. Acta Agriculturae Zhejiangensis, 2016, 28(12):2123-2129. http://d.old.wanfangdata.com.cn/Periodical/zjnyxb201612023

    [23]

    冉景, 王德建, 王灿, 等.便携式X射线荧光光谱法与原子吸收/原子荧光法测定土壤重金属的对比研究[J].光谱学与光谱分析, 2014, 34(11):3113-3118.

    Ran J, Wang D J, Wang C, et al.Comparison of soil heavy metals determined by AAS/AFS and portable X-ray fluorescence analysis[J]. Spectroscopy and Spectral Analysis, 2014, 34(11):3113-3118.

    [24]

    Ribeiro B T, Silva S H G, Silva E A, et al.Portable X-ray fluorescence(pXRF) applications in tropical Soil Science[J]. Ciência E Agrotecnologia, 2017, 41(3):245-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=708d0acdad7992fbfcdd033d20bc5f07

    [25]

    李哲, 庹先国, 穆克亮, 等.矿样中钛铁EDXRF分析的基体效应和神经网络校正研究[J].核技术, 2009, 32(1):35-40. http://d.old.wanfangdata.com.cn/Periodical/hjs200901009

    Li Z, Yu X G, Mu K L, et al.Matrix effect and ANN correcting technique in EDXRF analysis of Ti and Fe in core samples[J]. Nuclear Techniques, 2009, 32(1):35-40. http://d.old.wanfangdata.com.cn/Periodical/hjs200901009

    [26]

    齐海君, 王建英, 张雪峰, 等.白云鄂博矿中铈铁钙EDXRF分析的基体效应研究[J].光谱学与光谱分析, 2015, 35(12):3510-3513.

    Qi H J, Wang J Y, Zhang X F, et al.Matrix effect of Fe and Ca on EDXRF analysis of Ce concentration in bayan obo ores[J]. Spectroscopy and Spectral Analysis, 2015, 35(12):3510-3513.

    [27]

    董天宇, 王海江, Yunger A J, 等.便携式X射线荧光光谱仪实验室异位检测法的实用性研究[J].土壤, 2017, 49(4):853-857. http://d.old.wanfangdata.com.cn/Periodical/tr201704030

    Dong T Y, Wang H J, Yunger A J, et al.Practicality validation of portable X-ray fluorescence for ex-situ measuring soil heavy metals in laboratory[J]. Soils, 2017, 49(4):853-857. http://d.old.wanfangdata.com.cn/Periodical/tr201704030

    [28]

    李自强, 李小英, 钟琦, 等.电感耦合等离子体质谱法测定土壤重金属普查样品中铬铜镉铅的关键环节研究[J].岩矿测试, 2016, 35(1):37-41. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.007

    Li Z Q, Li X Y, Zhong Q, et al.Determination of Cr, Cu, Cd and Pb in soil samples by inductively coupled plasma-mass spectrometry for an investigation of heavy metal pollution[J]. Rock and Mineral Analysis, 2016, 35(1):37-41. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.007

    [29]

    邓述培, 范鹏飞, 唐玉霜, 等.X射线荧光光谱(XRF)法测定土壤污染样品中9种重金属元素[J].中国无机分析化学, 2019, 9(4):12-15. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201904003

    Deng S P, Fan P F, Tang Y S, et al.Determination of 9 kinds of soil pollution of heavy metals elements in samples by X-ray fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4):12-15. http://d.old.wanfangdata.com.cn/Periodical/zgwjfxhxwz201904003

    [30]

    张环月, 季守华, 李春艳. X射线荧光光谱法测定铬、钒、钛共存的钛合金中12种元素[J].冶金分析, 2014, 34(5):30-34. http://d.old.wanfangdata.com.cn/Periodical/yjfx201405006

    Zhang H Y, Ji S H, Li C Y.Determination of twelve elements coexisting with chromium, vanadium and titanium in titanium alloys by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2014, 34(5):30-34. http://d.old.wanfangdata.com.cn/Periodical/yjfx201405006

  • 加载中

(3)

(3)

计量
  • 文章访问数:  1257
  • PDF下载数:  20
  • 施引文献:  0
出版历程
收稿日期:  2019-11-20
修回日期:  2020-02-17
录用日期:  2020-05-12

目录