Determination of 14 Major and Minor Elements in Dust Ash by X-ray Fluorescence Spectrometry with Powder-Pelleting-Lined Boric Acid Preparation
-
摘要:
除尘灰中过高含量的钾、钠、锌、氯等元素严重影响转底炉的正常生产和稳定运行,为解决钢铁行业中除尘灰的环保和资源再利用问题,需准确测定其中各组分的含量。除尘灰种类多,钾、钠、锌和氯含量范围宽,采用X射线荧光光谱法(XRF)测定易超出工作曲线测定范围。本文基于粉末直接压片,采用硼酸衬底镶边的方法,将氯化钾、氯化钠和氧化锌基准试剂加入铁矿石标样中制备更高含量的校准样品,扩展了除尘灰日常分析中钾、钠、锌和氯的测定范围,使钾的测定范围为1.36%~12.00%,钠的测定范围为0.43%~6.85%,锌的测定范围为0.24%~35.00%,增加了氯的测定范围为0.25%~10.00%。本方法测定除尘灰中14种主次组分的精密度(RSD,n=7)均小于5.2%,实际样品的测定值与标准方法测定值基本一致,准确度和精密度良好。
Abstract:BACKGROUND The high content of potassium, sodium, zinc, and chlorine in dust ash significantly affects the stable operation of converter. To recycle the dust ash, it is necessary to accurately determine the contents of the components. Dust ash contains a broad range of potassium, sodium, zinc, and chlorine; therefore, the traditional X-ray fluorescence spectrometry (XRF) exceeds the range of the work curve.
OBJECTIVES To develop a method for the determination of 14 components in the dust ash with a broad concentration range of potassium, sodium, zinc, and chlorine.
METHODS Standard reagents of potassium chloride, sodium chloride, and zinc oxide were added to commercially available iron ore standards in a quantitative manner to provide a new series of calibration samples with wide ranges of potassium, sodium, zinc, and chlorine contents. The 14 components in the dust ash were determined by XRF spectrometry with a powder-pelleting-lined boric acid preparation.
RESULTS The measurement ranges of potassium, sodium, zinc, and chlorine were 1.36%-12.00%, 0.43%-6.85%, 0.24%-35.00%, and 0.25%-10.00%, respectively. The results of the 14 components in the dust ash were consistent with those of the traditional method, yielding a relative standard deviation of < 5.2% (n=7).
CONCLUSIONS XRF spectrometry with the powder-pelleting-lined boric acid preparation showed good accuracy and precision during the determination of 14 components in the dust ash.
-
-
表 1 分析元素测量条件
Table 1. Measurement conditions for the elements
元素 分析线 探测器 分析晶体 峰值
2θ(°)Si Kα PC PET 109.00 Al Kα PC PET 144.650 Ca Kα PC LIF1 113.10 Mg Kα PC RX25 38.25 Mn Kα SC LIF1 62.960 Ti Kα SC LIF1 86.110 As Kα SC LIF1 33.964 Fe Kα SC LIF1 57.50 Zn Kα SC LIF1 41.780 P Kα PC Ge 141.190 Pb Lβ1 SC LIF1 28.232 Cl Kα PC Ge 92.880 Na Kα PC RX25 46.440 K Kα PC LIF1 136.680 表 2 分析组分的测定范围
Table 2. Measurement ranges of the components
分析组分 测定范围
(%)分析组分 测定范围
(%)SiO2 1.35~48.50 TFe 17.49~66.87 Al2O3 0.11~4.93 Zn 0.24~35.00 CaO 0.13~10.50 P 0.0048~0.37 MgO 0.16~5.98 Pb 0.0040~0.182 MnO 0.061~3.63 Cl 0.25~10.00 TiO2 0.0070~0.32 Na 0.43~6.85 As 0.0011~0.22 K 1.36~12.00 表 3 重叠谱线及基体效应校正
Table 3. Correction of overlapping spectral lines and matrix effects
元素 分析线 基体校正元素 Si Kα P Al Kα P Ca Kα Al Mg Kα Ca, Al,P Mn Kα Fe,Al,Mg Ti Kα Mn As Kα Zn Fe Kα Ti,Mn Zn Kα Fe,Al,Mg P Kα Cl Pb Lβ1 Zn Cl Kα P,Al Na Kα P K Kα Ca,Mg,Al 表 4 各组分标准曲线参数
Table 4. Calibration curve parameters of each component
分析组分 浓度截距 斜率 相关系数
(R2)SiO2 0.1344 -1.2920 0.9926 Al2O3 0.1370 -0.1216 0.9946 CaO 0.03978 -0.2319 0.9949 MgO 0.2320 0.1197 0.9984 MnO 0.02614 -0.0003583 0.9969 TiO2 0.1468 -0.04658 0.9908 As 0.006079 0.0002817 0.9950 TFe 0.1953 -3.4351 0.9919 Zn 0.03059 -0.1809 0.9917 P 0.03647 -0.01743 0.9967 Pb 0.01996 0.005724 0.9893 Cl 0.9710 -1.3681 0.9925 Na 2.7073 -0.0819 0.9686 K 0.8273 -0.3554 0.9591 表 5 不同方法分析结果比对
Table 5. Comparison of analysis results by different methods
分析组分 1#转炉污泥 2#高炉污泥 3#布袋灰 4#转炉二次除尘灰 本方法测定值
(%)标准方法测定值
(%)相对偏差
(%)本方法测定值
(%)标准方法测定值
(%)相对偏差
(%)本方法测定值
(%)标准方法测定值
(%)相对偏差
(%)本方法测定值
(%)标准方法测定值
(%)相对偏差
(%)SiO2 1.41 1.46 -3.40 3.24 3.18 1.89 2.98 2.94 1.36 1.11 1.08 2.78 Al2O3 0.36 0.31 16.13 3.93 4.02 -2.24 3.11 3.07 1.30 0.26 0.27 -3.70 CaO 7.77 7.89 -1.52 3.78 3.74 1.07 2.07 2.04 1.47 9.55 9.57 -0.21 MgO 3.17 3.10 2.26 1.01 1.06 -4.72 0.58 0.61 -4.92 3.00 3.07 -2.28 MnO 0.23 0.20 9.52 0.18 0.17 5.88 0.082 0.079 3.80 0.55 0.56 -1.79 TiO2 0.041 0.045 -4.65 0.32 0.34 -5.88 0.13 0.14 -7.14 0.28 0.27 3.70 As 0.0035 0.0032 9.38 0.055 0.052 5.77 0.083 0.086 -3.49 0.17 0.18 -5.56 TFe 58.40 58.92 -0.88 32.76 32.70 0.18 21.58 21.53 0.23 52.99 52.93 0.11 Zn 0.57 0.54 5.56 25.40 25.18 0.87 12.24 12.21 0.25 5.69 5.72 -0.52 P 0.11 0.10 10.00 0.044 0.042 4.76 0.056 0.058 -3.45 0.074 0.071 4.23 Pb 0.26 0.24 8.33 0.26 0.24 8.33 0.014 0.013 7.69 0.15 0.16 -6.25 Cl 0.12 0.11 9.09 0.31 0.32 -3.13 1.49 1.51 -1.32 0.31 0.32 -3.13 Na 0.041 0.038 7.89 0.24 0.25 -4.00 0.13 0.14 -7.14 0.15 0.14 7.14 K 0.18 0.19 -5.26 0.091 0.093 -2.15 0.12 0.13 -7.69 0.074 0.072 2.78 注: ①相对偏差=(本方法分析结果-标准方法分析结果)/标准方法分析结果。
②各组分测定方法:TFe、CaO、MgO、Al2O3采用滴定法;SiO2采用重量法;Na、K采用AAS法;MnO、P、TiO2采用ICP-OES法;Zn、Pb、As采用光度法;Cl采用离子色谱法。 -
[1] 王彩虹, 蒋心泰. 酒钢除尘灰性质分析及应用技术[J]. 中国冶金, 2019, 29(3): 57-62.
Wang C H, Jiang X T. Property analysis and utilization technology of dust ash in Jiusteel[J]. China Metallurgy, 2019, 29(3): 57-62.
[2] 钱峰, 于淑娟, 侯洪宇, 等. 烧结机头电除尘灰资源化再利用[J]. 钢铁, 2019, 50(12): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201512014.htm
Qian F, Yu S J, Hou H Y, et al. Recycling of the electric dust in sintering machine head[J]. Iron and Steel, 2019, 50(12): 67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-GANT201512014.htm
[3] 马贵生, 夏秋雨, 张树华, 等. 钢厂高炉Zn负荷控制与含铁尘泥利用研究[J]. 烧结球团, 2020, 45(5): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SJQT202005017.htm
Ma G S, Xia Q Y, Zhang S H, et al. Research on Zn load control and utilization of ferrous dust in blast furnace of steel plant[J]. Sintering and Pelletizing, 2020, 45(5): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SJQT202005017.htm
[4] Jalkanen H, Oghbasialsie H, Raipala K. Recycling of steelmaking dusts: The radust concept[J]. Journal of Mining and Metallurgy (Section B: Metallurgy), 2005, 41(1): 1-16. doi: 10.2298/JMMB0501001J
[5] 王庆祥, 尹坚. 湘钢1号高炉碱金属行为[J]. 中国冶金, 2005, 15(2): 18-20. doi: 10.3969/j.issn.1006-9356.2005.02.004
Wang Q X, Yin J. Alkalis behavior in No. 1 BF of Xiangtan iron and steel company[J]. China Metallurgy, 2005, 15(2): 18-20. doi: 10.3969/j.issn.1006-9356.2005.02.004
[6] 秦立浩, 墙蔷, 阳红辉, 等. 烧结机头电除尘灰的分级利用[J]. 钢铁研究学报, 2020, 32(9): 802-808. https://www.cnki.com.cn/Article/CJFDTOTAL-IRON202009008.htm
Qin L H, Qiang Q, Yang H H, et al. Classified utilization of sintering EAF dust[J]. Journal of Iron and Steel Research, 2020, 32(9): 802-808. https://www.cnki.com.cn/Article/CJFDTOTAL-IRON202009008.htm
[7] She X F, Wang J S, Xue Q G, et al. Basic properties of steel plant dust and technological properties of direct reduction[J]. International Journal of Minerals, Metallurgy and Materials, 2011, 18(3): 277-284. doi: 10.1007/s12613-011-0434-9
[8] 张静, 薛彦辉, 李伟杰, 等. 烧结机头灰化学浸出试验研究[J]. 烧结球团, 2020, 45(1): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SJQT202001015.htm
Zhang J, Xue Y H, Li W J, et al. Experimental study on chemical leaching of dust at sintering machine feed end[J]. Sintering and Pelletizing, 2020, 45(1): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-SJQT202001015.htm
[9] 邱红绪, 周建辉, 杨朝帅, 等. 火焰原子吸收光谱法测定烧结机头电除尘灰中银[J]. 冶金分析, 2017, 37(9): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201706008.htm
Qiu H X, Zhou J H, Yang C S, et al. Determination of silver in electrostatic precipitator dust of sintering machine head by flame by flame atomic absorption spectrometry[J]. Metallurgical Analysis, 2017, 37(9): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201706008.htm
[10] 罗永红, 韦真周, 覃辉平, 等. 乙醇浸泡-活性炭富集火焰原子吸收光谱法测定烧结机头电除尘灰中金[J]. 冶金分析, 2017, 37(6): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201709012.htm
Luo Y H, Wei Z Z, Qin H P, et al. Determination of gold in electrostatic precipitator dust of sinter machine head by flame atomic absorption spectrometry after ethanol immersion-activated carbon enrichment[J]. Metallurgical Analysis, 2017, 37(6): 44-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201709012.htm
[11] 夏辉, 王小强, 何沙白, 等. 电感耦合等离子体原子发射光谱法测定高碳除尘灰中11种元素[J]. 冶金分析, 2016, 36(3): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201603011.htm
Xia H, Wang X Q, He S B, et al. Determination of eleven elements in high carbon dedusting ash by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2016, 36(3): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201603011.htm
[12] 任玲玲, 谭胜楠, 李建朝. 微波消解-电感耦合等离子体原子发射光谱法测定烧结除尘灰中9种元素[J]. 冶金分析, 2020, 40(6): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202006012.htm
Ren L L, Tan S N, Li J C. Determination of nine elements in sintering dedusting ash by inductively coupled plasma atomic emission spectrometry after microwave digestion[J]. Metallurgical Analysis, 2020, 40(6): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202006012.htm
[13] 谢忠信, 赵宗铃, 张玉斌, 等. X射线光谱分析[M]. 北京: 科学出版社, 1982: 249-275.
Xie Z X, Zhao Z L, Zhang Y B, et al. X-ray fluorescence spectrometer[M]. Beijing: Science Press, 1982: 249-275.
[14] 范佳慧, 周莉莉, 朱春要, 等. 熔融制样-X射线荧光光谱法测定除尘灰中10种组分[J]. 冶金分析, 2019, 29(3): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201910011.htm
Fan J H, Zhou L L, Zhu C Y, et al. Determination of ten components in dust ash by X-ray fluorescence spectrometry with fusion sample preparation technique[J]. Metallurgical Analysis, 2019, 29(3): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201910011.htm
[15] 曾江萍, 张莉娟, 李小莉, 等. 超细粉末压片-X射线荧光光谱法测定磷矿石中12种组分[J]. 冶金分析, 2015, 35(7): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201507009.htm
Zeng J P, Zhang L J, Li X L, et al. Determination of twelve components in phosphate ore by X-ray fluorescence spectrometry with ultra-fine powder tabletting[J]. Metallurgical Analysis, 2015, 35(7): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201507009.htm
[16] 李清彩, 赵庆令. 粉末压片制样波长色散X射线荧光光谱法测定钼矿石中9种元素[J]. 岩矿测试, 2014, 33(6): 839-843. http://www.ykcs.ac.cn/article/id/29977e2b-27e8-4c8c-9ca8-a1fa8c863efd
Li Q C, Zhao Q L. Determination of 9 elements in molybdenum ore by wavelength dispersive X-ray fluorescence spectrometry with powder pelleting preparation[J]. Rock and Mineral Analysis, 2014, 33(6): 839-843. http://www.ykcs.ac.cn/article/id/29977e2b-27e8-4c8c-9ca8-a1fa8c863efd
[17] 修凤凤, 樊勇, 李俊雨, 等. 粉末压片-波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素[J]. 岩矿测试, 2018, 37(5): 526-532. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704170061
Xiu F F, Fan Y, Li J Y, et al. Determination of 18 minor elements in the structural superimposed halo samples from gold deposits by wavelength dispersive X-ray fluorescence spectrometry with pressed-powder pellets[J]. Rock and Mineral Analysis, 2018, 37(5): 526-532. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201704170061
[18] 唐梦奇, 刘顺琼, 袁焕明, 等. 粉末压片制样-波长色散X射线荧光光谱法测定进口铜矿石中的氟[J]. 岩矿测试, 2013, 32(2): 254-257. doi: 10.3969/j.issn.0254-5357.2013.02.012 http://www.ykcs.ac.cn/article/id/596280fe-6da7-4ad4-8a5c-dc5421af3712
Tang M Q, Liu S Q, Yuan H M, et al. Determination of fluorine in import copper ores by wavelength dispersive X-ray fluorescence spectrometry with pressed powder preparation[J]. Rock and Mineral Analysis, 2013, 32(2): 254-257. doi: 10.3969/j.issn.0254-5357.2013.02.012 http://www.ykcs.ac.cn/article/id/596280fe-6da7-4ad4-8a5c-dc5421af3712
[19] 张颖, 朱爱美, 张迎秋, 等. 波长与能量色散复合式X射线荧光光谱技术测定海洋沉积物元素[J]. 分析化学, 2019, 47(7): 1090-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201907019.htm
Zhang Y, Zhu A M, Zhang Y Q, et al. Fast analysis of major and minor elements in marine sediments by wavelength and energy dispersive X-ray fluorescence spectrometer[J]. Chinese Journal of Analytical Chemistry, 2019, 47(7): 1090-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201907019.htm
[20] 王佳妮, 张晗, 洪子肖, 等. X射线荧光光谱法测定螺旋藻中23种微量元素[J]. 分析试验室, 2016, 35(2): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201602003.htm
Wang J N, Zhang H, Hong Z X, et al. Determination of 23 trace elements in spirulina using X-ray fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2016, 35(2): 130-134. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201602003.htm
[21] 刘玉纯, 林庆文, 马玲, 等. 粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化[J]. 岩矿测试, 2018, 37(6): 671-677. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801300014
Liu Y C, Lin Q W, Ma L, et al. Optimization of measurement conditions for geochemical survey sample analysis by X-ray fluorescence spectrometry with pressed powder pellet sample preparation[J]. Rock and Mineral Analysis, 2018, 37(6): 671-677. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201801300014
[22] 刘菊琴, 李小莉. 波长与能量色散复合型X射线荧光光谱仪测定海洋沉积物、水系沉积物、岩石和土壤样品中15种稀土元素[J]. 冶金分析, 2018, 38(5): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201805002.htm
Liu J Q, Li X L. Determination of fifteen rare earth elements in ocean sediment, stream sediment, rock and soil samples by wavelength dispersion-energy dispersion combined type X-ray fluorescence spectrometer[J]. Metallurgical Analysis, 2018, 38(5): 7-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201805002.htm
[23] 李小莉, 张勤. 粉末压片-X射线荧光光谱法测定土壤、水系沉积物和岩石样品中15种稀土元素[J]. 冶金分析, 2013, 33(7): 35-40. doi: 10.3969/j.issn.1000-7571.2013.07.007
Li X L, Zhang Q. Determination of fifteen rare earth elements in soil, stream sediment and rock samples by X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2013, 33(7): 35-40. doi: 10.3969/j.issn.1000-7571.2013.07.007
[24] 罗立强, 詹秀春, 李国会. X射线荧光光谱分析[M]. 北京: 化学工业出版社, 2015: 117-119.
Luo L Q, Zhan X C, Li G H. X-ray fluorescence spectrometer[M]. Beijing: Chemical Industry Press, 2015: 117-119.
[25] 殷惠民, 杜祯宇, 李玉武, 等. 能量色散X射线荧光光谱仪和简化的基体效应校正模型测定土壤、沉积物中重金属元素[J]. 冶金分析, 2018, 38(4): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201804001.htm
Yin H M, Du Z Y, Li Y W, et al. Determination of heavy metal elements in soil and sediment by energy dispersive X-ray fluorescence spectrometer with simplified matrix effect correction model[J]. Metallurgical Analysis, 2018, 38(4): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201804001.htm
[26] 殷惠民, 杜祯宇, 任立军, 等. 波长色散X射线荧光光谱谱线重叠和基体效应校正系数有效性判断及在土壤、沉积物重金属测定中的应用[J]. 冶金分析, 2018, 38(7): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201807001.htm
Yin H M, Du Z Y, Ren L J, et al. Determination of heavy metal elements in soil and sediment by energy dispersive X-ray fluorescence spectrometer with simplified matrix effect correction model[J]. Metallurgical Analysis, 2018, 38(7): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201807001.htm
[27] 夏传波, 姜云, 郑建业, 等. X射线荧光光谱法测定地质样品中氯的含量[J]. 理化检验(化学分册), 2017, 53(7): 775-779. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201707006.htm
Xia C B, Jiang Y, Zheng J Y, et al. XRFs determination of chlorine in geological samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 53(7): 775-779. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201707006.htm
[28] 王德全, 于青. 粉末压片-射线荧光光谱法测定高炉除尘灰中钾铅锌砷[J]. 冶金分析, 2014, 34(9): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201409009.htm
Wang D Q, Yu Q. Determination of potassium lead, zinc and arsenic in blast furnace dust by X-ray fluorescence spectrometry with pressed powder pallet[J]. Metallurgical Analysis, 2014, 34(9): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201409009.htm
-