Preparation of Reference Materials GBW10010a for Rice Component and Data Characteristics
-
摘要: 随着我国对生态文明建设的重视,自然资源综合调查势在必行,对生物标准物质亦提出了新的需求。当前相关调研工作已经大面积开展,自然资源综合调查、农产品与食品安全评价都需要对生物样品元素组成进行准确测试,需要以生物标准物质作为生物成分测试量值比对和溯源的基础,因此对生物基体标准物质的需求量大幅增加。大米作为主要粮食之一,其食品安全日益受到重视,对大米中的化学成分进行准确的分析测试具有重要的现实意义,因而对大米标准物质的需求量尤为突出,但目前大米成分分析标准物质已供不应求。本文严格按照《标准物质定值的通用原则及统计学原理》(JJF 1343—2012)和《地质分析标准物质的研制》(JJF 1646—2017)等相关规范要求,开展了GBW10010a大米成分分析标准物质的复(研)制工作,包括样品采集、加工制备、均匀性检验、稳定性检验、多家实验室协作定值测试及不确定度评定等关键环节。结果表明:本次复(研)制的大米标准物质定值成分多样、量值准确可靠,符合国家一级标准物质的要求。GBW10010a共定值54项主微量元素,包括Ag、Al、As、B、Ba、Be、Bi、Ca、Cd、Ce、Co、Cr、Cs、Cu、Dy、Er、Eu、Fe、Gd、Ge、Hg、Ho、K、La、Li、Ho、Mg、Mn、Mo、N、Na、Nb、Nd、Ni、P、Pb、Pr、Rb、S、Sb、Sc、Se、Si、Sm、Sr、Tb、Th、Tl、Tm、U、V、Y、Yb、Zn,其中的39项元素给出了标准值及不确定度,包括Ag、Al、As、B、Ba、Ca、Cd、Ce、Co、Cs、Cu、Dy、Er、Fe、Hg、K、Li、Mg、Mn、Mo、N、Na、Nd、Ni、P、Pb、Pr、Rb、S、Sb、Se、Si、Sm、Sr、Tb、Tl、Y、Yb、Zn;15项元素提供参考值,包括Be、Bi、Cr、Eu、Gd、Ge、Ho、Ho、La、Nb、Sc、Th、Tm、U、V。与原有GBW10010大米标准物质相比较,GBW10010a中As、Cd、Co、Cr、Cu、Hg、Mn、Mo、Ni、Zn等重金属元素含量显著下降,其中Cd、Cu、Zn降幅较大,分别下降约39%、43%、38.7%,一定程度上反映了农田生态环境的改善。本批标准物质定值元素总数量增加了6项,新增定值元素Ag、Nb(Nb给出参考值),并且各项元素不确定度范围整体上有所缩小,如Al、Cd、Cu、Fe、K、Mg、Mo、Na、P、Pb、Se、Zn等对生物易有影响的重要元素,表明了地质分析测试方法技术的进步及定值水平的提高。本批标准物质定值元素涵盖了具有生物效应的大部分主微量元素,适用于农业生态环境地球化学调查与评价、生物样品测试、农产品质量与食品安全评价样品测试时的分析仪器校正、分析方法评价和分析质量监控等多个领域。Abstract:
BACKGROUNDWith the increased attention paid for the construction of ecological civilization, a comprehensive survey of natural resources is imperative, and new requirements for biological reference materials have also been put forward. At present, relevant research work has been widely carried out. The comprehensive investigation of natural resources, agricultural products and food safety evaluation all need to accurately test the element composition of biological samples, and biological reference materials are needed as the basis for the comparison and traceability of biological components. The demand for biological matrix reference materials has increased significantly. As one of the main foods, the food safety of rice has been paid more and more attention. It is of great practical significance to carry out accurate analysis of the chemical components in rice. Therefore, the demand for rice is particularly prominent, but the rice reference materials for composition analysis are still lacking. OBJECTIVESTo develop rice certified reference material (GBW10010a) and compare it with the data characteristics of GBW10010. METHODSThe rice certified reference material (GBW10010a) was prepared in strict accordance with relevant specifications. The collected candidates were prepared through coarse crushing, drying, fine crushing, sieving, blending and other steps. The particle size distribution was detected by BT-9000ST laser particle size analyzer. 15 bottle samples were randomly selected and homogeneity testing was carried out by ICP-MS and ICP-OES, etc. The data were statistically calculated by one-way ANOVA, indicating good homogeneity of the samples. The long-term stability of the standard material under the specified storage conditions was investigated. The linear model was used to evaluate the stability of the sample. The determination of 60 components was carried out by means of ICP-MS, ICP-OES, AFS, COL, VOL, XRF, IC and other Analytical test methods. RESULTSThe rice reference material prepared in this research has diverse fixed value components, accurate and reliable measurement values, and meet the requirements of national first-level reference material. GBW10010a has a total of 54 main trace elements. 39 elements have certified values and uncertainties and 15 elements only have reference values. The content of heavy metal elements such as As, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Zn in GBW10010a decreased significantly, among which Cd, Cu, and Zn decreased by about 39%, 43% and 38.7%, respectively. CONCLUSIONSTo a certain extent, the values reflects the improvement of farmland ecological environment. Compared with the original GBW10010, the total number of certified value elements has increased by 6 items, including Ag and Nb (Nb gives reference values). Moreover, the uncertainty of each element is reduced, including biological-related elements Al, Cd, Cu, Fe, K, Mg, Mo, Na, P, Pb, Se, and Zn. The reduction indicates the technological advancement of the geological analysis and the improvement of the certified value level. In addition, the content of heavy metal elements in GBW10010a decreased significantly, reflecting the improvement of farmland ecological environment. The designated elements of the reference materials cover most of the main and trace elements with biological effects, and are suitable for the calibration of analytical instruments, evaluation of analytical methods, and monitoring analytical quality during agricultural ecological environment geochemical surveys and evaluation, biological sample analysis, agricultural product quality and food safety evaluation. -
-
表 1 GBW10010a候选物粒度分布统计
Table 1. Statistics of particle size distribution for GBW10010a candidate material
粒径(μm) 区间含量(%) 累计含量(%) <10 29.87 29.87 10~12 5.68 35.55 12~14 5.07 40.62 14~17 6.84 47.46 17~20 6.14 53.6 20~25 8.78 62.38 25~30 7.14 69.52 30~35 5.8 75.32 35~40 4.83 80.15 40~45 4.07 84.22 45~50 3.5 87.72 50~63 6.82 94.54 63~75 3.39 98.0 75~100 1.87 99.8 100~120 0.2 100 120~140 0 100 140~ 170 0 100 170~200 0 100 200~250 0 100 250~300 0 100 表 2 GBW10010a候选物均匀性检验结果
Table 2. Homogeneity test results for GBW10010a candidate material
元素 X RSD (%) F Ubb Al 150 4.53 0.83 3.03 As 0.078 6.9 0.97 0.00 B 0.688 9.61 1.30 0.02 Ba 0.146 8.27 1.66 0.01 Be 0.738 6.25 1.07 0.01 Bi 1.42 24.97 1.23 0.11 Ca 73.6 2.37 1.50 0.78 Cd 53.56 3.84 1.14 0.53 Co 6.46 9.43 1.25 0.20 Cr 0.073 12.87 1.16 0.00 Cs 3.12 9.14 1.28 0.10 Cu 2.98 3.08 1.34 0.03 Fe 4.02 3.3 1.12 0.03 Ge 1.82 14.72 2.30 0.17 K 914 1.78 1.16 4.38 Li 16.6 10.72 1.21 0.55 Mg 130 2.65 1.19 1.02 Mn 10.9 4.64 1.02 0.05 Mo 0.422 4.07 1.46 0.01 Na 11.8 14.18 1.06 0.28 Ni 0.302 3.18 2.09 0.01 P 781 4.71 1.29 13.05 Pb 0.098 23.85 1.09 0.00 Rb 1.75 3.01 1.55 0.02 S 1037 5.33 0.96 23.87 Sb 8.49 23.82 1.15 0.54 Si 48.6 15.28 1.20 2.27 Ti 2.17 1.8 2.24 0.02 Y 209 8.29 2.15 10.52 Yb 0.193 12.79 1.25 0.01 Zn 13.5 0.78 1.34 0.04 注:X为计算平均值; RSD为相对标准偏差; F检验临界值F0.05(14,15)=2.42;Ubb为均匀性引入的不确定度。 表 3 GBW10010a候选物长期稳定性检验结果
Table 3. Long-term stability test results for GBW10010a candidate material
元素 X RSD(%) b1 t0.05×s(b1) Us Al 151.1 2.00 0.478 0.747 2.8 B 0.669 1.84 0.001 0.005 0.017 Ba 0.155 4.75 -0.001 0.002 0.008 Be 0.85 6.51 0.009 0.014 0.052 Bi 1.732 5.96 -0.012 0.032 0.12 Ca 68.54 1.29 0.038 0.328 1.2 Cd 54.04 1.44 0.026 0.293 1.1 Ce 5.203 5.18 -0.035 0.080 0.3 Co 6.544 3.70 0.025 0.080 0.3 Cr 0.085 6.23 0.000 0.002 0.008 Cs 3.687 2.71 0.005 0.037 0.14 Cu 3.024 0.45 0.002 0.003 0.013 Fe 4.277 0.82 -0.005 0.010 0.039 Ge 2.019 4.48 0.009 0.030 0.11 K 914.3 0.23 -0.239 0.668 2.5 La 2.94 5.50 -0.018 0.052 0.2 Li 16.78 7.92 -0.195 0.357 1.3 Mg 130.8 1.79 -0.424 0.437 1.6 Mn 10.89 2.18 -0.031 0.070 0.26 Mo 0.408 2.69 -0.001 0.004 0.015 Na 12.23 2.68 -0.056 0.071 0.27 Ni 0.205 0.92 0.000 0.001 0.003 P 838.6 0.25 -0.182 0.734 2.8 Pb 0.109 3.27 0.000 0.001 0.005 Rb 1.709 1.55 -0.003 0.008 0.031 S 1026 0.23 -0.009 0.881 3.3 Sb 10.62 1.75 -0.005 0.070 0.26 Sr 0.146 4.41 0.001 0.001 0.006 Y 218.6 2.49 -0.129 2.054 7.8 Yb 0.188 4.50 0.001 0.002 0.008 Zn 13.48 0.44 -0.006 0.019 0.071 Zr 7.104 0.41 -0.003 0.010 0.037 注:X均为2次测试的平均值;b1为直线的斜率;t0.05×s(b1)为自由度95%的学生分布列表值;Us为稳定性引入的不确定度分量。Bi、Cd、Ce、Co、Cs、Ge、La、Li、Y、Yb的质量分数为10-9,其余元素的质量分数为10-6。 表 4 GBW10010a候选物短期稳定性检验结果
Table 4. Short-term stability test results for GBW10010a candidate material
元素 X RSD(%) b1 t0.05×s(b1) Al 151.1 1.41 0.182 1.141 B 0.667 2.00 0.000 0.008 Ba 0.153 4.38 -0.001 0.003 Bi 1.725 7.30 -0.018 0.050 Ca 68.5 2.63 0.127 0.995 Cd 54.0 1.87 0.112 0.494 Ce 5.27 5.65 -0.049 0.095 Co 6.61 2.92 0.019 0.099 Cr 0.086 6.98 0.000 0.004 Cs 3.68 2.94 -0.004 0.063 Cu 3.04 1.14 0.005 0.015 Fe 4.30 0.31 -0.001 0.007 Ge 2.05 4.18 0.010 0.040 K 916.3 1.28 0.251 6.942 La 2.95 6.34 -0.028 0.073 Li 16.4 7.91 -0.175 0.558 Mg 131.6 2.00 -0.347 1.157 Mn 10.8 2.59 -0.011 0.163 Mo 0.402 1.96 -0.001 0.004 Na 12.34 3.35 -0.061 0.160 Ni 0.202 1.95 0.001 0.001 P 839.0 1.19 -1.488 3.788 Pb 0.109 3.01 0.000 0.002 S 1011 1.53 -2.150 6.440 Sr 0.148 4.26 0.001 0.003 Y 215.8 1.35 -0.013 1.727 Yb 0.189 4.17 0.001 0.004 Zn 13.49 0.891 -0.017 0.050 注:X为2次测试的平均值; b1为直线的斜率; t0.05×s(b1)为自由度95%的学生分布列表值。 表 5 GBW10010a元素定值方法
Table 5. Sample decomposition methods and analytical methods for GBW10010a
元素 数据数 样品前处理方法 定值方法 Ag 7 DAC,DFMW ICP-MS(7) Al 7 DAC,FU ICP-OES(6),ICP-MS(1) As 11 DAC,DAMW,DFMW,DMA ICP-MS(6),AFS(4),ICP-OES(1) B 11 DAC,DAMW,DFMW ICP-MS(7),ICP-OES(3),ES(1) Ba 11 DAC,DAMW,DFMW ICP-MS(8),ICP-OES(3) Be 9 DAC,DAMW,DFMW ICP-MS(9) Bi 9 DAC,DFMW,DMA,DP ICP-MS(8),XRF(1) Br 5 DAC,FU ICP-MS(5) Ca 10 DAC,DAMW,DFMW ICP-OES(8),ICP-MS(2) Cd 11 DAC,DAMW,DFMW,DP ICP-MS(10),XRF(1) Ce 10 DAC,DAMW ICP-MS(10) Cl 6 DAC,DP,FU COL(4),IC(1),XRF(1) Co 10 DAC,DAMW,DFMW ICP-MS(10) Cr 11 DAC,DAMW,DFMW ICP-MS(11) Cs 9 DAC,DAMW,DFMW ICP-MS(9) Cu 12 DAC,DAMW,DFMW ICP-MS(10),ICP-OES(2) Dy 9 DAC,DAMW,DFMW ICP-MS(9) Er 9 DAC,DAMW,DFMW ICP-MS(9) Eu 9 DAC,DAMW,DFMW ICP-MS(9) F 5 DAC,DS,FU ISE(2),COL(2),IC(1) Fe 8 DAC,DAMW,DFMW ICP-OES(6),ICP-MS(2) Gd 9 DAC,DAMW,DFMW ICP-MS(9) Ge 7 DAC,DAMW,DFMW ICP-MS(7) Hg 10 DAC,DAMW,DFMW,DMA AFS(6),ICP-MS(4) Ho 10 DAC,DAMW,DFMW ICP-MS(10) I 5 DAC,DAMW,FU ICP-MS(4),COL(1) K 10 DAC,DAMW,DFMW ICP-OES(9),ICP-MS(1) La 9 DAC,DAMW,DFMW ICP-MS(9) Li 11 DAC,DAMW,DFMW ICP-MS(11) Lu 9 DAC,DAMW,DFMW ICP-MS(9) Mg 9 DAC,DAMW,DFMW ICP-OES(8),ICP-MS(1) Mn 13 DAC,DAMW,DFMW ICP-OES(7),ICP-MS(6) Mo 11 DAC,DAMW,DFMW ICP-MS(11) N 7 DA,DAC,DS VOL(7) Na 11 DAC,DAMW,DFMW ICP-OES(9),ICP-MS(2) Nb 4 DAC,DAMW ICP-MS(4) Nd 7 DAC,DAMW ICP-MS(7) Ni 10 DAC,DAMW ICP-MS(10) P 10 DAC,DAMW,DFMW ICP-OES(8),ICP-MS(2) Pb 10 DAC,DAMW,DFMW ICP-MS(10) Pr 9 DAC,DAMW,DFMW ICP-MS(9) Rb 11 DAC,DAMW,DFMW ICP-MS(11) S 10 DAC,DAMW,DFMW ICP-OES(8),ICP-MS(2) Sb 8 DAC,DAMW,DFMW ICP-MS(6),AFS(2) Sc 9 DAC,DAMW,DFMW ICP-MS(9) Se 9 DAC,DAMW,DMA AFS(5),ICP-MS(4) Si 8 DAC,DP,FU ICP-OES(7),DP-XRF(1) Sm 10 DAC,DAMW,DFMW ICP-MS(10) Sn 9 DAC,DAMW,DFMW ICP-MS(8),ES(1) Sr 11 DAC,DAMW,DFMW ICP-MS(7),ICP-OES(4) Tb 9 DAC,DAMW,DFMW ICP-MS(9) Th 8 DAC,DAMW,DFMW ICP-MS(8) Ti 9 DAC,DAMW,DFMW ICP-MS(6),ICP-OES(3) Tl 7 DAC,DAMW,DFMW ICP-MS(7) Tm 9 DAC,DAMW,DFMW ICP-MS(9) U 9 DAC,DAMW,DFMW ICP-MS(9) V 8 DAC,DAMW,DFMW ICP-MS(8) Y 10 DAC,DAMW,DFMW ICP-MS(10) Yb 9 DAC,DAMW,DFMW ICP-MS(9) Zn 12 DAC,DAMW,DFMW ICP-MS(9),ICP-OES(3) 注:分解与富集方法:DAC—硝酸加过氧化氢密闭分解;DFMW—硝酸加氢氟酸微波消解;FU—碱熔或艾斯卡熔融;DAMW—硝酸加过氧化氢微波消解;DMA—混合酸分解;DP—粉末压片法;DS—硫酸分解。
测定方法:ICP-MS—电感耦合等离子体质谱法;ICP-OES—电感耦合等离子体发射光谱法;AFS—原子荧光光谱法;XRF—X射线荧光光谱法;ES—直流电弧发射光谱法;COL—分光光度法;IC—离子色谱法;ISE—离子选择电极法;VOL—容量法。括号内的数字代表分析测试方法使用次数。表 6 GBW10010a认定值与不确定度
Table 6. Certified values and expanded uncertainty for GBW10010a
元素 认定值与不确定度(×10-6) Ag 0.004±0.001 Al* 0.015±0.001 As 0.08±0.01 B 0.7±0.2 Ba 0.15±0.03 Be** -0.7 Bi** -1.4 Br - Ca* 0.007±0.001 Cd** 53±4 Ce 0.004±0.002 Cl* - Co 0.006±0.002 Cr -0.08 Cs 0.003±0.001 Cu 3.0±0.2 Dy** 0.32±0.08 Er** 0.19±0.05 Eu** -0.2 F - Fe 4.0±0.8 Gd** -0.3 Ge** -1.8 Hg** 4.2±0.6 Ho** -0.1 I K* 0.090±0.005 La (2.6)** Li 0.016±0.004 Lu** -0.04 Mg* 0.013±0.001 Mn 11.1±0.7 Mo 0.42±0.04 N* 1.30±0.05 Na 11.8±1.6 Nb (1.3)** Nd 1.0±0.3** Ni 0.21±0.02 P* 0.078±0.003 Pb 0.10±0.02 Pr** 0.5±0.2 Rb 1.8±0.2 S* 0.10±0.01 Sb 0.009±0.003 Sc** -6 Se 0.036±0.008 Si 48±15 Sm** 0.3±0.1 Sn - Sr 0.15±0.03 Tb** 0.07±0.03 Th** -1 Ti - Tl** 0.23±0.05 Tm** -0.05 U** -0.8 V -0.02 Y 0.21±0.05 Yb** 0.19±0.05 Zn 13.3±1.2 注:带“*”的元素含量单位为10-2;带“**”的元素含量单位为10-9;“-”为该元素未分析测试。 表 7 GBW10010与GBW10010a定值数据对比
Table 7. Comparison of certified values between GBW10010 and GBW10010a
元素 定值(×10-6) GBW10010 GBW10010a Ag - 0.004±0.001 Al* 0.039±0.004 0.015±0.001 As 0.102±0.008 0.08±0.01 B 0.92±0.14 0.7±0.2 Ba 0.40±0.09 0.15±0.03 Be** 1.8±0.4 (0.7) Bi** (2.0) (1.4) Br 0.56±0.13 - Ca* 0.011±0.001 0.007±0.001 Cd** 87±5 53±4 Ce 0.011±0.002 0.004±0.002 Cl* 0.040±0.004 - Co (0.010) 0.006±0.002 Cr (0.09) (0.08) Cs 0.014±0.005 0.003±0.001 Cu 4.9±0.3 3.0±0.2 Dy** (0.8) 0.32±0.08 Er** (0.32) 0.19±0.05 Eu** (0.3) (0.2) Fe 7.6±1.9 4.0±0.8 Gd** (0.75) (0.3) Ge** (5) (1.8) Hf (0.12) - Hg** 5.3±0.5 4.2±0.6 Ho** (0.12) (0.1) I (0.09) - K* 0.138±0.007 0.090±0.005 La 0.008±0.003 (0.0026) Li 0.044±0.007 0.016±0.004 Lu** (0.04) (0.04) Mg* 0.041±0.006 0.013±0.001 Mn 17±1 11.1±0.7 Mo 0.53±0.05 0.42±0.04 N* 1.61±0.04 1.30±0.05 Na 25±8 11.8±1.6 Nb** - (1.3) Nd** (4) 1.0±0.3 Ni 0.27±0.02 0.21±0.02 P* 0.136±0.006 0.078±0.003 Pb 0.08±0.03 0.10±0.02 Pr** 1.1±0.3 0.5±0.2 Rb 3.9±0.3 1.8±0.2 S* 0.147±0.024 0.10±0.01 Sb (0.004) 0.009±0.003 Sc** (2.5) (6) Se 0.061±0.015 0.036±0.008 Si* 0.025±0.003 0.048±0.015 Sm** (0.9) 0.3±0.1 Sr 0.30±0.05 0.15±0.03 Tb** (0.10) 0.07±0.03 Th** (4) (1) Ti (2) - Tl** (0.7) 0.23±0.05 Tm** (0.05) (0.05) U** (1.2) (0.8) V (0.03) (0.02) Y 0.052±0.009 0.21±0.05 Yb** (0.3) 0.19±0.05 Zn 23±2 13.3±1.2 灰分* (0.8) - 注:带“*”的元素质量分数为10-2;带“**”的元素质量分数为10-9;“±”后的数据为不确定度;括号内数据为参考值;“-”为该元素未分析测试。 -
[1] Zhao H F, Yan H Y, Zhang L M, et al.Mercury contents in rice and potential health risks across China[J].Environment International, 2019, 126:406-412. http://www.ncbi.nlm.nih.gov/pubmed/30826619
[2] 李苗.新时代下我国粮食产量的影响因素分析[J].价值工程, 2019(14):150-152. http://d.wanfangdata.com.cn/periodical/jzgc201914049
Li M.Analysis on the influencing factors of grain yield in China in the new era[J].Value Engineering, 2019(14):150-152. http://d.wanfangdata.com.cn/periodical/jzgc201914049
[3] 王欣梅, 肖革新, 曹贤文, 等.湖南省大米中镉污染风险监测现状分析及应对策略[J].环境卫生学杂志, 2019, 9(4):396-400. http://d.wanfangdata.com.cn/periodical/gwyx-wsx201904021
Wang X M, Xiao G X, Cao X W, et al.Cadmium pollution in Hunan rice risk monitoring present situation analysis and strategies[J].Journal of Environmental Health Magazine, 2019, 9(4):396-400. http://d.wanfangdata.com.cn/periodical/gwyx-wsx201904021
[4] Qian Y Z, Chen C, Zhang Q, et al.Concentrations of cadmium, lead, mercury and arsenic in Chinese market milled rice and associated population health risk[J].Food Control, 2010, 21(12):1757-1763. http://www.sciencedirect.com/science/article/pii/S095671351000277X
[5] Kato L S, Nadai F E A, Bacchi M A, et al. Instrumental neutron activation analysis for assessing homogeneity of a whole rice candidate reference material[J].Journal of Radioanalytical & Nuclear Chemistry, 2013, 297(2):271-275. http://link.springer.com/article/10.1007/s10967-012-2391-9
[6] Wang Y J, Han J L, Wang L, et al.Total mercury and methylmercury in rice:Exposure and health implications in Bangladesh[J].Environmental Pollution:Part A, 2020(265):1-8. http://www.sciencedirect.com/science/article/pii/S0269749120317097
[7] Lu A X, Li B R, Li J, et al.Heavy metals in paddy soil-rice systems of industrial and township areas from subtropical China:Levels, transfer and health risks[J].Journal of Geochemical Exploration, 2018, 194:210-217. http://www.sciencedirect.com/science/article/pii/S0375674218302322
[8] 王巧云, 何欣, 王锐.国内外标准物质发展现状[J].化学试剂, 2014(4):289-296. http://www.cqvip.com/QK/94520X/20144/49171312.html
Wang Q Y, He X, Wang R.Development of reference materials in China and abroad[J].Chemical Reagents, 2014(4):289-296. http://www.cqvip.com/QK/94520X/20144/49171312.html
[9] The international database for certified reference materials[DB/OL].http://www.comar.bam.de/en/.
[10] 刘妹, 顾铁新, 潘含江, 等.泛滥平原沉积物标准物质研制[J].岩矿测试, 2018, 37(5):558-571. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
Liu M, Gu T X, Pan H J, et al.Preparation of seven reference materials for floodplain sediments[J].Rock and Mineral Analysis, 2018, 37(5):558-571. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
[11] 程志中, 刘妹, 张勤, 等.水系沉积物标准物质研制[J].岩矿测试, 2011, 30(6):714-722. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
Cheng Z Z, Liu M, Zhang Q, et al.Preparation of geochemical reference materials of stream sediments[J].Rock and Mineral Analysis, 2011, 30(6):714-722. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
[12] 刘素丽, 王宏伟, 赵梅, 等.食品中基体标准物质研究进展[J].食品安全质量检测学报, 2019, 10(1):8-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spaqzljcjs201901002
Liu S L, Wang H W, Zhao M, et al.Research progress of matrix reference materials for food[J].Journal of Food Safety and Quality, 2019, 10(1):8-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spaqzljcjs201901002
[13] 程志中, 黄宏库, 刘妹, 等.大米成分分析标准物质的研制[J].化学分析计量, 2011, 20(3):7-10. http://d.wanfangdata.com.cn/Periodical/hxfxjl201103002
Cheng Z Z, Huang H K, Liu M, et al.Preparation of reference materials for rice component analysis[J].Chemical Analysis and Meterage, 2011, 20(3):7-10. http://d.wanfangdata.com.cn/Periodical/hxfxjl201103002
[14] 王晓红, 王毅民, 高玉淑, 等.地质标准物质均匀性检验方法评价与探讨[J].岩矿测试, 2010, 29(6):735-741. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
Wang X H, Wang Y M, Gao Y S, et al.A review on homogeneity testing techniques for geochemical reference material in China[J].Rock and Mineral Analysis, 2010, 29(6):735-741. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
[15] 鄢明才, 王春书.地球化学标准物质的研制——植物光谱金[M].北京:地质出版社, 1991:1-124.
Yan M C, Wang C S.Development of geochemical reference materials-Plants spectra of gold[M].Beijing:Geological Publishing House, 1991:1-124.
[16] 全浩, 韩永志.标准物质及其应用技术(第二版)[M].北京:中国标准出版社, 2003:225-230.
Quan H, Han Y Z.Reference materials and their applied technology (2nd edition)[M].Beijing:China Standard Publishing House, 2003:225-230.
[17] 杨忠芳, 朱立, 陈岳龙.现代环境地球化学[M].北京:地质出版社, 1999:154-205.
Yang Z F, Zhu L, Chen Y L.Modern environmental geochemistry[M].Beijing:Geological Publishing House, 1999:154-205.
[18] Xie X J, Ren T X.National geochemical mapping and en-vironmental geochemistry-Progress in China[J].Journal of Geochemical Exploration, 1993, 49(1-2):15-34. http://www.sciencedirect.com/science/article/pii/037567429390037M
[19] 谢学锦, 任天祥, 奚小环, 等.中国区域化探全国扫面计划卅年[J].地球学报, 2009, 30(6):700-716. http://www.cqvip.com/QK/98325A/20096/32793024.html
Xie X J, Ren T X, Xi X H, et al.The implementation of the Regional Geochemistry-National Recon-Naissance Program (RGNR) in China in the past thirty years[J].Acta Geoscientica Sinica, 2009, 30(6):700-716. http://www.cqvip.com/QK/98325A/20096/32793024.html
[20] 谢学锦, 叶家瑜, 鄢明才.川滇黔桂76种元素地球化学图编制中分析方法与分析质量研究(三)考核不同实验室分析质量的新方法[J].地质通报, 2003, 22(1):1-11.
Xie X J, Ye J Y, Yan M C.Analytic methods and quality in the compilation of 76 elements geochemical atlas of Sichuan, Yunnan, Guizhou, Guangxi Provinces of China. (3):New proficiency test for analytical laboratories involved in environmental geochemical mapping[J].Geological Bulletin of China, 2003, 22(1):1-11.
[21] 罗立强, 吴晓军.现代地质与地球化学分析研究进展[M].北京:地质出版社, 2014:417.
Luo L Q, Wu X J.Advances in geoanalysis[M].Beijing:Geological Publishing House, 2014:417.
[22] 郑存江.地质标准物质不确定度评估方法初探[J].岩矿测试, 2005, 24(4):284-286. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
Zheng C J.Primary investigation for evaluation of uncertainty of geological reference materials[J].Rock and Mineral Analysis, 2005, 24(4):284-286. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
[23] 李国会, 樊守忠.X射线荧光光谱法在标准物质均匀性检验中的应用[J].地质实验室, 1995, 11(1):40-43. http://www.cqvip.com/Main/Detail.aspx?id=1712656
Li G H, Fan S Z.Application of X-ray fluorescence method in test for homogeneity of reference materials[J].Geological Laboratory, 1995, 11(1):40-43. http://www.cqvip.com/Main/Detail.aspx?id=1712656
[24] 詹杰, 魏树和, 牛荣成.我国稻田土壤镉污染现状及安全生产新措施[J].农业环境科学学报, 2012, 31(7):1257-1263. http://d.wanfangdata.com.cn/Periodical/nyhjbh201207001
Zhan J, Wei S H, Niu R C.Advances of cadmium contaminated paddy soil research and new measure of its safe production in China:A review[J].Journal of Agro-Environment Science, 2012, 31(7):1257-1263. http://d.wanfangdata.com.cn/Periodical/nyhjbh201207001
[25] 庄国泰.我国土壤污染现状与防控策略[J].中国科学院院刊, 2015, 30(4):477-483. http://d.wanfangdata.com.cn/periodical/zgkxyyk201504007
Zhuang G T.Current situation of national soil pollution and strategies on prevention and control[J].Bulletin of Chinese Academy of Sciences, 2015, 30(4):477-483. http://d.wanfangdata.com.cn/periodical/zgkxyyk201504007
[26] 胡鹏杰, 李柱, 吴龙华.我国农田土壤重金属污染修复技术、问题及对策诌议[J].农业现代化研究, 2018, 39(4):535-542. http://www.zhangqiaokeyan.com/academic-journal-cn_research-agricultural-modernization_thesis/0201258102073.html
Hu P J, Li Z, Wu L H.Current remediation technologies of heavy metal polluted farmland soil in China:Progress, challenge and countermeasure[J].Research of Agricultural Modernization, 2018, 39(4):535-542. http://www.zhangqiaokeyan.com/academic-journal-cn_research-agricultural-modernization_thesis/0201258102073.html
[27] 习小山.浅析岩矿分析与测试技术在当前阶段的应用与发展趋势[J].中国新技术新产品, 2016(21):174-175. http://www.cqvip.com/QK/61371A/201621/670284775.html
Xi X S.The application and development trend of rock mine analysis and testing technology in the current stage[J].New Technology & New Products of China, 2016(21):174-175. http://www.cqvip.com/QK/61371A/201621/670284775.html
[28] 汪艳芸, 邓晃.岩矿分析技术发展方向及其在实物地质资料中的应用浅析[J].中国矿业, 2017(2):374-376. http://www.cqvip.com/QK/92839A/2017S2/90717565504849558350485656.html
Wang Y Y, Deng H.A brief analysis of the development direction of rock ore analysis technology and its application in physical geological data[J].China Mining Magazine, 2017(2):374-376. http://www.cqvip.com/QK/92839A/2017S2/90717565504849558350485656.html
[29] 尹明.我国地质分析测试技术发展现状及趋势[J].岩矿测试, 2009, 28(1):37-52. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
Yin M.Progress and prospect on geoanalytical techniques in China[J].Rock and Mineral Analysis, 2009, 28(1):37-52. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201907310115
[30] 刘妹, 顾铁新, 史长义, 等.我国主要土壤类型元素地球化学形态成分标准物质研制[J].物探与化探, 2008, 32(5):492-496. http://www.cqvip.com/QK/95670X/200805/28373849.html
Liu M, Gu T X, Shi C Y, et al.The preparation of geochemical speciation certified reference materials for main soil types of China[J].Geophysical and Geochemical Exploration, 2008, 32(5):492-496. http://www.cqvip.com/QK/95670X/200805/28373849.html
-