中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

榴莲壳和不同炭材料对低汞溶液的吸附动力学

赵子科, 陈春亮, 柯盛, 赵利容, 张际标, 李剑. 榴莲壳和不同炭材料对低汞溶液的吸附动力学[J]. 岩矿测试, 2022, 41(1): 90-98. doi: 10.15898/j.cnki.11-2131/td.202106010069
引用本文: 赵子科, 陈春亮, 柯盛, 赵利容, 张际标, 李剑. 榴莲壳和不同炭材料对低汞溶液的吸附动力学[J]. 岩矿测试, 2022, 41(1): 90-98. doi: 10.15898/j.cnki.11-2131/td.202106010069
ZHAO Zi-ke, CHEN Chun-liang, KE Sheng, ZHAO Li-rong, ZHANG Ji-biao, LI Jian. Adsorption Kinetics of Low Mercury Solution with Durian Shell and Activated Carbon[J]. Rock and Mineral Analysis, 2022, 41(1): 90-98. doi: 10.15898/j.cnki.11-2131/td.202106010069
Citation: ZHAO Zi-ke, CHEN Chun-liang, KE Sheng, ZHAO Li-rong, ZHANG Ji-biao, LI Jian. Adsorption Kinetics of Low Mercury Solution with Durian Shell and Activated Carbon[J]. Rock and Mineral Analysis, 2022, 41(1): 90-98. doi: 10.15898/j.cnki.11-2131/td.202106010069

榴莲壳和不同炭材料对低汞溶液的吸附动力学

  • 基金项目:
    广东省湛江市非资助科技攻关计划项目“湛江湾邻苯二甲酸酯类环境激素(PAEs)污染的陆源输入特征和排海通量研究”(2019B01009)
详细信息
    作者简介: 赵子科, 硕士, 实验师, 从事海洋汞的地球化学研究。E-mail: zhaozk@gdou.edu.cn
    通讯作者: 陈春亮, 硕士, 高级工程师, 从事渔业资源与环境保护。E-mail: 13822586665@126.com
  • 中图分类号: O657.1

Adsorption Kinetics of Low Mercury Solution with Durian Shell and Activated Carbon

More Information
  • 含Hg(Ⅱ)废水直接排放会对环境产生危害,目前多采用活性炭去除,而活性炭制作需要高温热解和活化,导致其使用成本较高。近年来,果皮、果渣、炉渣等废弃物也被尝试应用于直接去除水溶液中的重金属离子。本文采用榴莲壳、椰壳活性炭和活性炭纤维在不同条件下对低浓度Hg(Ⅱ)溶液进行吸附,使用原子荧光光谱法对吸附溶液中剩余的Hg(Ⅱ)含量进行测定,着重对榴莲壳的吸附机理进行探索。实验结果揭示,Hg(Ⅱ)在Lagergren准二级动力学模型下,三种材料最大吸附量(Qm)比较结果为:活性炭纤维(5.61μg/g)>榴莲壳(1.68μg/g)>椰壳活性炭(0.96μg/g)。吸附试验和热力学方程得出三种材料对Hg(Ⅱ)的吸附均是自发进行的(ΔG < 0);椰壳活性炭对Hg(Ⅱ)的吸附以物理吸附为主(ΔH>0);榴莲壳吸附为吸热过程(ΔH < 0),吸附体系升温可提高榴莲壳吸附Hg(Ⅱ)的速率和吸附容量。本研究表明来源广泛的榴莲壳可以作为吸附剂处理含Hg(Ⅱ)的废水,达到以废治废的目的。

  • 加载中
  • 图 1  椰壳活性炭(a)扫描电镜图和(b)能谱扫描图(电压30kV)

    Figure 1. 

    图 2  不同吸附材料Hg(Ⅱ)去除率随时间的变化

    Figure 2. 

    图 3  不同pH下各种吸附材料Hg(Ⅱ)去除率的变化

    Figure 3. 

    图 4  榴莲壳(a)、椰壳活性炭(a)和活性碳纤维(b)投料量对Hg(Ⅱ)去除率的变化

    Figure 4. 

    图 5  温度对不同吸附材料去除率的变化趋势

    Figure 5. 

    图 6  不同材料对Hg(Ⅱ)的吸附等温线

    Figure 6. 

    表 1  榴莲壳和不同炭材料吸附Hg(Ⅱ)动力学参数

    Table 1.  Kinetic parameters of mercury(Ⅱ) adsorption by durian shell and different carbon materials

    吸附剂种类 Lagergren准一级动力学模型 Lagergren准二级动力学模型 Elovich吸附模型
    k1 [g/(μg·min)] Qm (μg/g) R2 k2 [g/(μg·min)] Qm (μg/g) R2 a b R2
    榴莲壳 0.04 1.45 0.84 0.03 1.68 0.92 0.17 2.84 0.96
    椰壳活性炭 0.15 0.87 0.52 0.56 0.96 0.72 1.65 7.77 0.78
    活性炭纤维 0.08 5.09 0.92 0.02 5.61 0.98 2.57 1.09 0.93
    下载: 导出CSV

    表 2  不同吸附材料平衡常数和热力学方程

    Table 2.  Equilibrium constants and thermodynamic equations of different adsorbents

    吸附剂种类 温度(K) KC ΔG (kJ/mol) ΔS[kJ/ (mol·K)] ΔH (kJ/mol) 结论
    榴莲壳 298 1.75 -1.38 0.05 13.05 温度升高,反应速率加快
    303 2.47 -2.28
    313 2.76 -2.64
    323 2.76 -2.73
    333 3.59 -3.54
    椰壳活性炭 298 2.16 -1.91 -0.006 -5.06 任何温度下均为自发过程
    303 4.15 -0.05
    313 5.41 -0.08
    323 2.36 -0.02
    333 2.25 -0.02
    活性炭纤维 298 8.43 -5.28 0.026 1.00 温度升高,反应速率加快
    303 16.24 -7.02
    313 25.32 -8.41
    323 9.87 -6.15
    333 13.71 -7.25
    下载: 导出CSV

    表 3  不同吸附材料对Hg(Ⅱ)吸附的Freundlich参数

    Table 3.  Freundlich parameters of Hg(Ⅱ) adsorption on different adsorption materials

    吸附材料 Freundlich参数
    K 1/n R2
    榴莲壳 3.48 0.57 0.76
    椰壳活性炭 16.0 0.41 0.89
    活性炭纤维 1.02 1.06 0.83
    下载: 导出CSV
  • [1]

    曹艳芝, 郭少青, 高丽兵. 以Hg2+离子为前驱体标定煤热解气中气相元素汞量[J]. 岩矿测试, 2017, 36(6): 581-586. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201703070027

    Cao Y Z, Guo S Q, Gao L B. Determination of gaseous element mercury in coal pyrolysis gas using Hg2+ as precursor[J]. Rock and Mineral Analysis, 2017, 36(6): 581-586. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201703070027

    [2]

    徐春霞, 孟郁苗, 黄诚, 等. 汞同位素地球化学研究及其在矿床学中的应用进展[J]. 岩矿测试, 2021, 40(2): 173-186. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202009210125

    Xu C X, Meng Y M, Huang C, et al. Mercury isotope geochemistry and its application in ore deposit science[J]. Rock and Mineral Analysis, 2021, 40(2): 173-186. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202009210125

    [3]

    南雪娇, 余晓平, 郭金玲, 等. 水生生态系统中汞-硒相互作用研究进展[J]. 岩矿测试, 2016, 35(1): 1-9. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.002

    Nan X J, Yu X P, Guo J L, et al. Research progress of mercury selenium interaction in aquatic ecosystem[J]. Rock and Mineral Analysis, 2016, 35(1): 1-9. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.002

    [4]

    Li K, Wang Y, Huang M, et al. Preparation of chitosan-graft-polyacrylamide magnetic composite microspheres for enhanced selective removal of mercury ions from water[J]. Journal of Colloid & Interface Science, 2015, 455: 261-270. http://www.onacademic.com/detail/journal_1000037829582210_a5d5.html

    [5]

    Rahul B, Padmaj P. A chitosan-thiomer polymer for highly efficacious adsorption of mercury[J]. Carbohydrate Polymers, 2019, 207: 663-674. doi: 10.1016/j.carbpol.2018.12.018

    [6]

    李玉堂, 李柱, 刘志阳, 等. 表面功能化活性炭对水溶液中汞离子的吸附[J]. 广州化工, 2019, 47(5): 72-74, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHA201905032.htm

    Li Y T, Li Z, Liu Z Y, et al. Adsorption of mercury ions in aqueous solution by surface functionalized activated carbon[J]. Guangzhou Chemical Industry, 2019, 47(5): 72-74, 77. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHA201905032.htm

    [7]

    贾里, 李泽鹏, 郭晋荣, 等. 多元金属定向修饰的改性生物焦微观特性及单质汞脱除性能研究[J]. 环境科学学报, 2021, 41(8): 3100-3111. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202108015.htm

    Jia L, Li Z P, Guo J R, et al. Study on the micro-characteristics and elemental mercury removal performance of biochar doped by multi-metal directional modification[J]. Acta Scientiae Circumstantiae, 2021, 41(8): 3100-3111. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202108015.htm

    [8]

    Annadurai G, Juang R S, Lee D J. Adsorption of heavy metals from water using banana and orange peels[J]. Water Science & Technology, 2003, 47(1): 185-190. http://www.researchgate.net/profile/Ruey-Shin_Juang/publication/10908469_Adsorption_of_Heavy_Metals_From_Water_Using_Banana_and_Orange_Peels/links/0046351c8e921e1686000000/Adsorption-of-Heavy-Metals-From-Water-Using-Banana-and-Orange-Peels.pdf

    [9]

    熊佰炼, 崔译霖, 张进忠, 等. 改性甘蔗渣吸附废水中低浓度Cd2+和Cr3+的研究[J]. 西南大学学报(自然科学版), 2010, 2(1): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201001024.htm

    Xiong B L, Cui Y L, Zhang J Z, et al. Study on the adsorption of low concentration Cd2+ and Cr3+ in wastewater from modified sugarcane residue[J]. Journal of Southwest University (Natural Science Edition), 2010, 32(1): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND201001024.htm

    [10]

    Shaikh A A, Yaagoob I Y, Mazumder M, et al. Fast re-moval of methylene blue and Hg(Ⅱ) from aqueous solution using a novel super-adsorbent containing residues of glycine and maleic acid[J]. Journal of Hazardous Materials, 2019, 369: 642-654. doi: 10.1016/j.jhazmat.2019.02.082

    [11]

    Zou W, Han R, Chen Z, et al. Kinetic study of adsorption of Cu(Ⅱ) and Pb(Ⅱ) from aqueous solutions using manganese oxide coated zeolite in batch mode[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2006, 279(1-3): 238-246. http://www.sciencedirect.com/science/article/pii/S092777570600029X

    [12]

    Lin G, Hu T, Wang S, et al. Selective removal behavior and mechanism of trace Hg(Ⅱ) using modified corn husk leaves[J]. Chemosphere, 2019, 225: 65-72. doi: 10.1016/j.chemosphere.2019.03.006

    [13]

    黄锦波, 邵灵达, 祝成炎. 活性炭纤维的制备及其应用进展[J]. 棉纺织技术, 2020(10): 11-14. doi: 10.3969/j.issn.1001-7415.2020.10.003

    Huang J B, Shao L D, Zhu C Y. Preparation and application progress of activated carbon fiber[J]. Cotton Textile Technology, 2020(10): 11-14. doi: 10.3969/j.issn.1001-7415.2020.10.003

    [14]

    王洪杰, 兰依博, 李晓东. KMnO4改性稻壳、稻杆水热炭吸附染料的研究[J]. 应用化工, 2019, 48(6): 1344-1350. doi: 10.3969/j.issn.1671-3206.2019.06.022

    Wang H J, Lan Y B, Li X D. Study on the adsorption of dyes by KMnO4 modified rice husk and rice straw hydrothermal carbon[J]. Applied Chemical Industry, 2019, 48(6): 1344-1350. doi: 10.3969/j.issn.1671-3206.2019.06.022

    [15]

    马培, 张继伟. 茶树菇废弃物对汞吸附特性的研究[J]. 江苏农业科学, 2017, 45(9): 253-255. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201709069.htm

    Ma P, Zhang J W. Study on mercury adsorption characteristics of agrocybe aegerita waste[J]. Jiangsu Agricultural Sciences, 2017, 45(9): 253-255. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201709069.htm

    [16]

    Sadegh H, Ali G, Makhlouf A, et al. MWCNTs-Fe3O4 nanocomposite for Hg(Ⅱ) high adsorption efficiency[J]. Journal of Molecular Liquids, 2018: 345-353.

    [17]

    韩严和. 电增强活性炭纤维吸附水中部分有机物的研究[D]. 大连: 大连理工大学, 2006.

    Han Y H. Study on adsorption of some organic compounds in water by electro enhanced activated carbon fiber[D]. Dalian: Dalian University of Technology, 2006.

    [18]

    Qiu K Z, Zhou J S, Qi P, et al. Experimental study on ZnO-TiO2 sorbents for the removal of elemental mercury[J]. Korean Journal of Chemical Engineering, 2017, 34(9): 2383-2389. doi: 10.1007/s11814-017-0154-6

    [19]

    Seyedeh S G, Mojtaba H, Behrooz M, et al. Adsorption of mercury ions from synthetic aqueous solution using polydopamine decorated SWCNTs[J]. Journal of Water Process Engineering, 2019, 32: 100964-100975. doi: 10.1016/j.jwpe.2019.100964

    [20]

    Zakaria A, Abdallah A, Mohammed M, et al. New amino group functionalized porous carbon for strong chelation ability towards toxic heavy metals[J]. RSC Advances, 2020, 10(52): 31087-31100. doi: 10.1039/D0RA05220E

    [21]

    Esmail M, Mojtaba H, Hojat V. Kinetics and thermo-dynamics of mercury adsorption onto thiolated graphene oxide nanoparticles[J]. Polyhedron, 2019, 173: 1-9.

    [22]

    孙荣国, 范丽, 尹晓刚, 等. 香蕉皮对汞的吸附特征研究[J]. 地球与环境, 2018(5): 498-504. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201805012.htm

    Sun R G, Fan L, Yin X G, et al. Study on mercury adsorption characteristics of banana peel[J]. Earth and Environment, 2018(5): 498-504. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201805012.htm

    [23]

    李朝丽, 周立祥. 黄棕壤不同粒级组分对镉的吸附动力学与热力学研究[J]. 环境科学, 2008, 29(5): 1406-1411. doi: 10.3321/j.issn:0250-3301.2008.05.044

    Li C L, Zhou L X. Kinetics and thermodynamics of cadmium adsorption by different fractions of yellow brown soil[J]. Environmental Science, 2008, 29(5): 1406-1411. doi: 10.3321/j.issn:0250-3301.2008.05.044

    [24]

    Agrawal A, Sahu K K. Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue[J]. Journal of Hazardous Materials, 2006, 137(2): 915-924. doi: 10.1016/j.jhazmat.2006.03.039

    [25]

    甄豪波, 胡勇有, 程建华. 壳聚糖交联沸石小球对Cu2+, Ni2+及Cd2+的吸附特性[J]. 环境科学学报, 2011, 31(7): 1369-1376. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201107006.htm

    Zhen H B, Hu Y Y, Cheng J H. Adsorption properties of chitosan crosslinked zeolite beads for Cu2+, Ni2+ and Cd2+[J]. Acta Scientiae Circumstantiae, 2011, 31(7): 1369-1376. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201107006.htm

  • 加载中

(6)

(3)

计量
  • 文章访问数:  2456
  • PDF下载数:  111
  • 施引文献:  0
出版历程
收稿日期:  2021-06-01
修回日期:  2021-07-20
录用日期:  2021-08-28
刊出日期:  2022-01-28

目录