-
摘要:
含Ti硅酸盐玻璃在基础科学研究和应用技术开发上均有重要价值,亟需对其进行准确的成分分析,为进一步的科研工作提供重要的数据支撑。对玻璃进行电子探针分析时,由于样品的易损性和其中(Na和K)阳离子在电子束轰击下极易发生迁移和扩散,因此往往需要经过条件实验来确定合适的分析条件,确保样品在该条件下能够保持尽量稳定的状态,才能获得相对准确的定量分析结果。本文通过改变电子束束斑大小、电子束束流强度,以及待测元素特征X射线谱线峰位的计数时间,对高Na(NTS)和高K(KTS)的两类含Ti硅酸盐玻璃(Na2O/K2O-TiO2-SiO2)进行系统分析,以获得其准确的元素化学组分,并为样品进一步的物理属性研究提供重要参考。本文研究表明,随着束斑大小增加、电流降低以及增加计数时间的变量改变,待测元素的定量分析结果大都表现出有规律的变化。并且,以最大限度接近样品理论含量为标准,确定在大束斑(80~100μm)、小电流(3nA或5nA)及适宜计数时间(10s、20s、30s和40s)条件下,可以对样品进行准确的定量分析。这与以往的玻璃分析条件有所不同,可能与本文样品的高Na、K以及Ti含量有关。与此同时,通过网格分析元素面分布建模,本文研究还揭示了待测样品中可能存在化学价键及相应晶体化学组构,这将为进一步的相关研究提供新思路和探索方向。
-
关键词:
- 硅酸盐玻璃 /
- Na2O-TiO2-SiO2体系 /
- K2O-TiO2-SiO2体系 /
- 电子探针 /
- 定量分析 /
- 网格分析
Abstract:BACKGROUND The precise measurement for Na and K in silicate glass is usually difficult in electron probe microanalysis (EPMA). Ti-containing silicate glass has an important value in basic scientific research and application technology development, and it is urgent to carry out accurate composition analysis to provide important data support for further scientific research work. The glass is of amorphous form and damageable under electron bombardment. Moreover, the alkali Na and K elements can easily diffuse and migrate during the electron bombing. Therefore, it is often necessary to set the appropriate analysis conditions through conditional experiments to ensure that the sample can be kept as stable as possible under these conditions, so that relatively accurate quantitative analysis results can be obtained.
OBJECTIVES To determine the proper analytical conditions for Na and K analyses in the silicate glass.
METHODS Electron probe quantitative analyses for Na and K were performed in the synthetized silicate glass samples of NTS (Na2O-TiO2-SiO2) and KTS (K2O-TiO2-SiO2). By changing the probe diameter (10-100μm), beam current (3nA, 5nA and 10nA) and count time (10s, 20s, 30s and 40s) orderly in a series of experiments, the optimal analytical conditions for accurate quantitative results were established.
RESULTS The results showed a systematic change with positive trend of Na, K, Si and Ti contents with probe diameter and count time increases, but a contrasting trend for beam current. In most cases, the conditions of larger probe diameter up to 80-100μm and lower beam current (3nA or 5nA) provided the highest Na or K content that maximumly approaches the normal value before synthesis. This was different from the previous glass analysis conditions, which may be related to the high Na, K and Ti content of the samples. In grid analysis for elemental map modeling, certain correlation(s) among Na, K, Si and Ti were revealed, which provided further perspectives for potential chemical bonds, i.e. crystallochemical structure of the sample.
CONCLUSIONS A larger probe diameter of 100μm and lower beam current of 3-5nA for Na and K analyses in silicate glass are recommended for optimum analysis.
-
-
表 1 测试样品的初始化学成分(据文献[37]整理)
Table 1. Normal (NOR) values of analyzed samples before synthesis (modified after Reference[37])
样品编号 Na2O (%) K2O (%) TiO2 (%) SiO2 (%) 总量(%) NTS-1 28.51 - 12.49 58.64 99.64 NTS-2 23.65 - 30.49 45.86 100.00 NTS-4 33.02 - 30.40 36.58 100.00 NTS-5 31.89 - 39.86 28.18 99.93 NTS-6 14.23 - 30.58 55.19 100.00 NTS-8 37.68 - 31.35 31.96 100.00 NTS-9 18.95 - 30.53 50.52 100.00 NTS-10 18.39 - 41.49 40.12 100.00 KTS-2 - 32.01 27.15 40.84 100.00 KTS-3 - 33.36 11.32 55.32 100.00 KTS-6 - 28.47 28.47 51.39 100.00 KTS-7 - 37.54 26.54 35.92 100.00 KTS-10 - 25.52 37.87 36.62 100.00 -
[1] 周剑雄, 毛水和. 电子探针分析[M]. 北京: 地质出版社, 1988.
Zhou J X, Mao S H. Electron microprobe analysis[M]. Beijing: Geological Publishing House, 1988.
[2] 徐萃章. 电子探针分析原理[M]. 北京: 科学出版社, 1990.
Xu C Z. The principle of electron microprobe analysis[M]. Beijing: Geological Publishing House, 1990.
[3] 胡志中, 李佩, 蒋璐蔓, 等. 古代玻璃材料LA-ICP-MS组分分析及产源研究[J]. 岩矿测试, 2020, 39(4): 505-514. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201909210134
Hu Z Z, Li P, Jiang L M, et al. Application of LA-ICP-MS in the analysis of archaeological glass and source discrimination[J]. Rock and Mineral Analysis, 2020, 39(4): 505-514. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.201909210134
[4] 解未易, 沈彦, 李力力, 等. SIMS测定玻璃固化样品中铀分布的分析方法研究[J]. 岩矿测试, 2016, 35(6): 579-584. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.06.003
Xie W Y, Shen Y, Li L L, et al. Determination of the distribution of uranium in glass solidified samples by secondary ionization mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(6): 579-584. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.06.003
[5] 陈光. 新材料概论[M]. 北京: 科学出版社, 2003.
Chen G. Introduction to new materials[M]. Beijing: Science Press, 2003.
[6] Siivola J. On the evaporation of some alkali metals during the electron microprobe analysis[J]. Bulletin of Geological Society of Finland, 1969, 41: 85-91. doi: 10.17741/bgsf/41.009
[7] Howitt D G, Chan H W, DeNatale J F, et al. Mechanism for the radiolytically induced decomposition of soda-silicate glasses[J]. Journal of American Ceramic Society, 1991, 74(5): 1145-1147. doi: 10.1111/j.1151-2916.1991.tb04358.x
[8] 李香庭, 郭祝崑. 电子轰击下固体的Na+迁移[J]. 硅酸盐学报, 1984, 3(1): 9-12. https://cdmd.cnki.com.cn/Article/CDMD-10270-1012454670.htm
Li X T, Guo Z K. Na+ migration under electron bombardment[J]. Bulletin of the Chinese Ceramic Society, 1984, 3(1): 9-12. https://cdmd.cnki.com.cn/Article/CDMD-10270-1012454670.htm
[9] 李香庭. 不稳定样品的EPMA分析[J]. 电子显微学报, 1994, 13(1): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV401.011.htm
Li X T. EPMA analysis of the unstable sample[J]. Journal of Chinese Electron Microscopy Society, 1994, 13(1): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXV401.011.htm
[10] Nielsen C H, Sigurdsson H. Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses[J]. American Mineralogist, 1981, 66(5-6): 547-552.
[11] Jbara O, Cazaux J, Trebbia P. Sodium diffusion in glasses during electron irradiation[J]. Journal of Applied Physics, 1995, 78(2): 868-875. doi: 10.1063/1.360277
[12] Hunt J B, Hill P G. An inter-laboratory comparison of the electron probe microanalysis of glass geochemistry[J]. Quaternary International, 1996, 34-36: 229-241. doi: 10.1016/1040-6182(95)00088-7
[13] Malfait W, Sanchez-Vallea C, Ardia P, et al. Compo-sitional dependent compressibility of dissolved water in silicate glasses[J]. American Mineralogist, 2011, 96: 1402-1409. doi: 10.2138/am.2011.3718
[14] Seifert R, Malfait W J, Lerch P, et al. Partial molar volume and compressibility of dissolved CO2 in glasses with magmatic compositions[J]. Chemical Geology, 2013, 358: 119-130. doi: 10.1016/j.chemgeo.2013.09.007
[15] Malfait W J, Seiferta R, Petitgirard S, et al. The density of andesitic melts and the compressibility of dissolved water in silicate melts at crustal and upper mantle conditions[J]. Earth and Planetary Science Letters, 2014, 393: 31-38. doi: 10.1016/j.epsl.2014.02.042
[16] Zhang Y, Behrens H. H2O diffusion in rhyolitic melts and glasses[J]. Chemical Geology, 2000, 169(1-2): 243-262. doi: 10.1016/S0009-2541(99)00231-4
[17] Wu L, Yang D B, Liu J X, et al. A brillouin scattering study of hydrous basaltic glasses: The effect of H2O on their elastic behavior and implications for the densities of basaltic melts[J]. Physics and Chemistry of Minerals, 2017, 44: 431-444. doi: 10.1007/s00269-017-0870-9
[18] Li Z, Ding J, Ni H. Effect of alkalis on water diffusion in silicate melts based on new experimental data for a shoshonitic melt[J]. Geochemica et Cosmochimica Acta, 2020, 290: 16-26. doi: 10.1016/j.gca.2020.08.031
[19] 孙志华, 刘开平, 刘民武. 玄武岩玻璃的电子探针分析[J]. 岩矿测试, 2011, 30(4): 446-450. doi: 10.3969/j.issn.0254-5357.2011.04.011 http://www.ykcs.ac.cn/article/id/ykcs_20110410
Sun Z Y, Liu K P, Liu M W. Analysis of basalt glass by electron probe micro analyzer[J]. Rock and Mineral Analysis, 2011, 30(4): 446-450. doi: 10.3969/j.issn.0254-5357.2011.04.011 http://www.ykcs.ac.cn/article/id/ykcs_20110410
[20] 李小犁. 电子探针微量元素分析的一些思考[J]. 高校地质学报, 2021, 27(3): 306-316. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202103007.htm
Li X L. Several perspectives on microprobe trace elements analysis[J]. Geological Journal of China Universities, 2021, 27(3): 306-316. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202103007.htm
[21] 包志安, 袁洪林, 陈开运, 等. 高温熔融研制安山岩玻璃标准物质初探[J]. 岩矿测试, 2011, 30(5): 521-527. http://www.ykcs.ac.cn/article/id/ykcs_20110501
Bao Z A, Yuan H L, Chen K Y, et al. Primary research on a synthetic experimental method of Andesite standard glass references by using high-temperature fusion[J]. Rock and Mineral Analysis, 2011, 30(4): 521-527. http://www.ykcs.ac.cn/article/id/ykcs_20110501
[22] 宋佳瑶, 袁洪林, 包志安, 等. 高温熔融研制钾长石玻璃标准物质初探[J]. 岩矿测试, 2011, 30(4): 406-411. doi: 10.3969/j.issn.0254-5357.2011.04.005 http://www.ykcs.ac.cn/article/id/ykcs_20110404
Song J Y, Yuan H L, Bao Z A, et al. Preliminary research of K-feldspar glasses synthesis by high temperature melting[J]. Rock and Mineral Analysis, 2011, 30(4): 406-411. doi: 10.3969/j.issn.0254-5357.2011.04.005 http://www.ykcs.ac.cn/article/id/ykcs_20110404
[23] Morgan V G B, London D. Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses[J]. American Mineralogist, 1996, 81(9-10): 1176-1185. doi: 10.2138/am-1996-9-1016
[24] Morgan V G B, London D. Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses[J]. American Mineralogist, 2005, 90(7): 1131-1138. doi: 10.2138/am.2005.1769
[25] Zhang R, Yang S, Jiang S, et al. Effect of beam diameter on the accurate analysis of silicate glasses using electron probe microanalysis[J]. Microscopy and Microanalysis, 2019, 25(S2): 2362-2363. doi: 10.1017/S1431927619012546
[26] Spary J G, Rae D A. Quantitative electron-microprobe analysis of alkali silicate glasses: A review and user guide[J]. Canadian Mineralogist, 1995, 33(2): 323-332.
[27] Buse B, Kearns S. Importance of carbon contamination in high-resolution (FEG) EPMA of silicate minerals[J]. Microscopy and Microanalysis, 2015, 21(3): 594-605. doi: 10.1017/S1431927615000288
[28] Vasamillet L F, Caldwell V F. Electron-probe microanalysis of alkali metals in glasses[J]. Journal of Applied Physics, 1969, 40: 1637-1643. doi: 10.1063/1.1657825
[29] Mitchell R H. Titaniferous phlogopites from the leucite-lamproites of the West Kimberley area, western Australia[J]. Contributions to Mineralogy and Petrology, 1981, 76: 243-251. doi: 10.1007/BF00371964
[30] Wagner C, Velde D. The mineralogy of K-richterite-bearing lamproites[J]. American Mineralogist, 1986, 7(1): 17-37.
[31] Liu Q, Lange R A, Ai Y. Acoustic velocity measurements on Na2O-TiO2-SiO2 liquids: Evidence for a highly compressible TiO2 component related to five-coordinated Ti[J]. Geochimica et Cosmochimica Acta, 2007, 71(17): 4314-4326. doi: 10.1016/j.gca.2007.06.054
[32] Bell E. Ancient magma sources revealed[J]. Nature Geosciences, 2017, 10: 397-398. doi: 10.1038/ngeo2955
[33] Singletary S, Grove T. Origin of lunar high-titanium ultramafic glasses: A hybridized source?[J]. Earth and Planetary Science Letters, 2008, 268(1-2): 182-189. doi: 10.1016/j.epsl.2008.01.019
[34] 欧阳自远, 邹永廖. 月球: 人类走向深空的前哨站[M]. 北京: 清华大学出版社, 2002.
Ouyang Z Y, Zou Y L. Moon: The outpost to deep space[M]. Beijing: Tsinghua University Press, 2002.
[35] Belyi Y I, Minakova N A, Zaichuk A V. On the structural units in titanium-containing glasses and their influence on the opacity of glass coatings[J]. Glass Physics & Chemistry, 2008, 34(3): 282-291.
[36] Li X, Zhang L, Wei C, et al. Quartz and orthopyroxene exsolution lamellae in clinopyroxene and the metamorphic P-T path of Belomorian eclogites[J]. Journal of Metamorphic Geology, 2018, 35: 1-22.
[37] Liu Q, Lange R A. The partial molar volume and thermal expansivity of TiO2 in alkali silicate melts: Systematic variation with Ti coordination[J]. Geochimica et Cosmochimica Acta, 2001, 65(14): 2379-2393. doi: 10.1016/S0016-7037(01)00565-8
[38] 张文兰, 胡欢, 谢磊, 等. Na元素的EPMA定量分析: 矿物晶体结构对Na行为的制约[J]. 高校地质学报, 2021, 27(3): 327-339. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202103009.htm
Zhang W L, Hu H, Xie L, et al. Quantitative analysis of Na by EPMA: Constraints for the behavior of Na by the crystal structure[J]. Geological Journal of China Universities, 2021, 27(3): 327-339. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202103009.htm
-