Determination of Sulfur in Different Types of Geochemical Samples by ICP-OES with Acid Dissolution and Combustion-Infrared Absorption Spectrometry
-
摘要:
测试地质样品中的硫含量,以电感耦合等离子体发射光谱法(ICP-OES)和燃烧-红外吸收光谱法应用最为广泛。ICP-OES法灵敏度高、稳定性好,但受样品预处理和基体干扰的影响较大;燃烧-红外吸收光谱法便捷高效,但受结晶水红外吸收干扰,分析硫含量低的样品稳定性较差。本文采用5种酸溶方式处理样品ICP-OES测定硫含量,同时采用燃烧-红外吸收光谱法测定低中高含量的硫,综合比较了两类方法的检出限、检测范围、精密度和准确度、分析效率等,明确了各方法的适用范围。实验中确定了燃烧-红外吸收光谱法最佳测试条件为:称样量0.0500g,燃烧时间25s,分析时间40s,氧气流量4.0L/min;通过标准物质验证,该方法检出限为10×10-6,检测范围为10×10-6~470000×10-6,相对标准偏差(RSD) < 6%(n=12),相对误差绝对值小于8%。实验结果表明,ICP-OES分析效率高,但是样品处理时间长,检测范围不如燃烧-红外吸收光谱法宽;燃烧-红外吸收光谱法采用固体直接进样,成本低,用高氯酸镁作为干燥剂可解决结晶水红外吸收干扰问题。总体上,ICP-OES法适用于分析硫含量低的样品或作为测试结果佐证的手段,可实现多元素联测;批量样品或基体类型复杂的样品宜采用燃烧-红外吸收光谱法测试,更加便捷。
-
关键词:
- 硫 /
- 地球化学样品 /
- 酸溶 /
- 电感耦合等离子体发射光谱法 /
- 燃烧-红外吸收光谱法
Abstract:BACKGROUND Inductively coupled plasma-optical emission spectrometry (ICP-OES) and combustion-infrared absorption spectrometry are the most widely used methods to measure sulfur content in geological samples. The ICP-OES method has high sensitivity and good stability, but it is greatly affected by sample pretreatment and matrix interference. Combustion-infrared absorption spectrometry is convenient and efficient, but due to the interference of crystal water infrared absorption, the analysis of samples with low sulfur content has poor stability.
OBJECTIVES To study the application scope of the two methods in geological sample analysis.
METHODS The sulfur content of samples was determined by ICP-OES and combustion-infrared absorption spectrometry. The detection limit, detection range, precision, accuracy and analysis efficiency of the two methods was compared in order to study and understand the performance of the two methods in sulfur measurement of geological samples.
RESULTS The best test condition of combustion-infrared absorption spectrometry was determined thus: optimal sample weight of 0.0500g, combustion time of 25s, analysis time of 40s and oxygen analysis flow rate of 4.0L/min. The detection limit of combustion-infrared absorption spectrometry was 10×10-6 and the detection range was 10×10-6-470000×10-6. The accuracy relative standard deviation (RSD) of the method was less than 6% (n=12) and the absolute value of relative error was less than 8%.
CONCLUSIONS For the analysis of low-sulfur samples, ICP-OES method can be used to analyze or compare, and multi-element simultaneous measurement can be determined. Batch samples or samples with a complex matrix can be analyzed by combustion-infrared absorption spectrometry, which is more convenient and efficient.
-
-
表 1 称样量实验结果
Table 1. Analytical results of sample weight test
称样量(g) 硫含量测试平均值(×10-6) 硫含量标准值(×10-6) 相对误差(%) GBW07446 GBW07451 GBW07449 GBW07446 GBW07451 GBW07449 GBW07446 GBW07451 GBW07449 0.0250 123 484 24696 108±16 440±42 27000±2900 13.9 10.0 8.5 0.0500 118 484 24603 9.3 10.0 8.9 0.1000 97.3 484 23070 9.9 10.0 91.5 0.1500 89.1 377 21525 17.5 14.3 20.3 0.2000 78.6 374 20362 27.2 15.0 24.6 0.2500 68.7 326 16261 36.4 25.9 39.7 0.5000 39.2 186 8029 63.7 57.7 7.03 表 2 燃烧时间和分析时间实验结果
Table 2. Analytical results of the experimental conditions of different burning time and analysis time
燃烧时间(s) GBW07451 GBW07726 GBW07449 硫含量标准值(×10-6) 硫含量测试值(×10-6) 相对误差(%) 硫含量标准值(×10-6) 硫含量测试值(×10-6) 相对误差(%) 硫含量标准值(×10-6) 硫含量测试值(×10-6) 相对误差(%) 5 440±42 25 -94.3 326 26 -92.0 27000±2900 13 -100 10 440±42 443 0.7 326 306 -6.1 27000±2900 26754 -0.9 15 440±42 430 -2.3 326 318 -2.5 27000±2900 26900 -0.4 20 440±42 443 0.7 326 313 -4.0 27000±2900 26805 -0.7 25 440±42 448 1.8 326 308 -5.5 27000±2900 27099 0.4 30 440±42 443 0.7 326 303 -7.1 27000±2900 26360 -2.4 分析时间(s) GBW07446 GBW07451 GBW07449 硫含量标准值(×10-6) 硫含量测试值(×10-6) 相对误差(%) 硫含量标准值(×10-6) 硫含量测试值(×10-6) 相对误差(%) 硫含量标准值(×10-6) 硫含量测试值(×10-6) 相对误差(%) 25 108±16 82 -24.1 440±42 335 -23.9 27000±2900 23435 -13.2 30 108±16 107 -0.9 440±42 438 -0.5 27000±2900 26364 -2.4 35 108±16 105 -2.8 440±42 446 1.4 27000±2900 27400 1.5 40 108±16 108 0.0 440±42 452 2.7 27000±2900 26994 0.0 45 108±16 111 2.8 440±42 455 3.4 27000±2900 27330 1.2 表 3 氧气流量实验结果
Table 3. Analytical results of oxygen flow test
氧气流量(L/min) GBW07360 GBW07726 GBW07449 硫含量标准值(×10-6) 硫含量测试值(×10-6) 相对误差(%) 硫含量标准值(×10-6) 硫含量测试值(×10-6) 相对误差(%) 硫含量标准值(×10-6) 硫含量测试值(×10-6) 相对误差(%) 2.5 532±84 677 27.3 326 384 17.8 27000±2900 34988 29.6 3.0 532±84 618 16.2 326 392 20.2 27000±2900 31888 18.1 3.5 532±84 570 7.1 326 338 3.7 27000±2900 28438 5.3 4.0 532±84 532 0 326 327 0.3 27000±2900 26173 -3.1 4.5 532±84 无 / 326 无 / 27000±2900 无 / 5.0 532±84 无 / 326 无 / 27000±2900 无 / 表 4 方法检测上限
Table 4. Upper detection limit of the method
标准物质编号 硫含量标准值(×10-2) 硫含量测试值(×10-2) 相对误差(%) GBW07165 29.0±0.4 28.8 -0.7 GBW07166 33.8±0.3 33.4 -1.2 GSB04-2709—2011
(ZBK325)39.52±0.50 39.36 0.4 GSB04-2709—2011
(ZBK398)47.60±0.50 47.92 -0.67 GBW07144 33.72±0.55 33.72 -0.0003 GBW07149 27.83±0.65 27.52 -1.2 表 5 方法精密度和准确度(n=12)
Table 5. Precision and accuracy tests of the method
样品编号 硫含量标准值(×10-6) 硫含量测定平均值(×10-6) RSD (%) 相对误差(%) GBW07449 27000±290 27100 0.6 -0.4 GBW07403 123±14 122 5.5 0.8 GBW07406 260±43 260 2.0 -3.9 GBW07453 2000±300 2100 1.8 -5.0 GBW07364 6700±600 6600 1.5 1.5 GBW07360 532±84 534 1.9 -0.4 GBW07365 6200 6400 3.2 -3.2 GBW07106 860±42 890 4.0 -3.5 GBW07446 108±14 100 5.3 7.4 GBW07361 66±10 67.2 5.9 -1.5 GBW07120 36±8 37 5.4 -2.8 GBW07423 241±22 240 1.9 0.4 实际样品1 / 43.6a 38.4b 12.7c 实际样品2 / 58.1a 62.6b 7.5c 实际样品3 / 35.6a 36.8b 3.3 c 注:a表示燃烧-红外吸收光谱法测试值;b表示ICP-OES测试值;
c表示燃烧-红外吸收光谱法与ICP-OES测试值之间的双差。表 6 酸溶ICP-OES法与燃烧-红外吸收光谱法测定硫含量检出限及检测范围比较
Table 6. Comparison of detection limit and detection range of sulfur determined by acid dissolution-ICP-OES and combustion-infrared absorption spectrometry
分析方法 称样量(g) 检出限(×10-6) 检测限(×10-6) 检测范围(×10-6) RSD (%) 相对误差(%) 参考文献 微波消解ICP-OES法 0.2000~ 0.5000 0.053 0~40 / ≤8 ≤2 [16] 四酸敞口溶样ICP-OES法 0.1000 0.03 9.53 / ≤10 ≤15 [17] 王水溶样ICP-OES法 0.3000 0.01 / / ≤3 ≤10 [13] 三酸敞口溶样ICP-OES法 0.2500 3.087 3.087 / ≤0.19 ≤6 [28] 四酸封闭溶样ICP-OES法 0.1000 0.03 9.58 / ≤15 ≤16 [12] 燃烧-红外吸收光谱法 0.05 10 10 20~470000 ≤6 ≤8 本文方法 表 7 分析方法性能评价
Table 7. Evaluation of the analytical methods
样品处理和测试方法 分析方法优势 存在问题 参考文献 微波消解ICP-OES法 称样量少,微波消解样品分解完全、试剂消耗少、回收率高,能减少硫在前处理过程中引入的试剂空白 流程繁琐,受Ca基体干扰 [16] 四酸敞口溶样ICP-OES法 称样量少,采用硝酸、氟化氢、高氯酸和磷酸共同构成的溶样体系,能够顺利实现元素分离,避免元素挥发损失 容易受到B元素谱线的干扰 [17] 王水溶样ICP-OES法 精密度高,RSD介于0.2%~3.0%之间 称样量大 [13] 三酸敞口溶样ICP-OES法 精密度好,结果准确 称样量大 [28] 四酸封闭溶样ICP-OES法 称样量少,封闭溶样样品分解完全。方法检出限低,精密度高 封闭溶样过程繁琐,时间长,容易污染 [12] 燃烧-红外吸收光谱法 称样量少,固体进样,试剂使用少,安全环保,线性范围宽。方法适用于不同基体的样品分析 硫受结晶水红外干扰,对除水要求高 本文 表 8 标准物质测试结果比对
Table 8. Comparison of analytical results
标准物质编号 结晶水含量(×10-2) 硫含量标准值(×10-6) 本文方法硫含量测试值(×10-6) 相对误差(%) GBW07302a 1.26 76±14 70 7.9 GBW07362 3.23 110±18 120 -9.1 GBW07303a 3.78 2700 2780 -3.0 GBW07305a 3.97 2400±300 2446 -1.9 GBW07304a 4.3 361±38 360 0.3 GBW07318 4.4 110 114 -3.6 GBW07363 4.6 350 351 -0.3 GBW07430 5.8 261±26 260 0.4 GBW07405 8.8 410±54 420 -2.4 GBW07406 8.9 260±43 270 -3.8 GBW07404 10.1 180±36 170 5.6 GBW07407 13.7 250±36 255 -2.0 -
[1] 张世文. 燃烧碘量法测定硫常见问题的分析与讨论[J]. 新疆有色金属, 2014, 40(2): 130-131. https://www.cnki.com.cn/Article/CJFDTOTAL-XJYS2014S2051.htm
Zhang S W. Analysis and discussion of common problems in sulfur determination by combustion iodine method[J]. Xinjiang Nonferrous Metals, 2014, 40(2): 130-131. https://www.cnki.com.cn/Article/CJFDTOTAL-XJYS2014S2051.htm
[2] 王嘉鸿. 燃烧-碘量法测定硫[J]. 新疆有色金属, 2017, 33(3): 93-94. https://www.cnki.com.cn/Article/CJFDTOTAL-XJYS201703034.htm
Wang J H. Determination of sulfur by combustion iodine method[J]. Xinjiang Nonferrous Metals, 2017, 33(3): 93-94. https://www.cnki.com.cn/Article/CJFDTOTAL-XJYS201703034.htm
[3] 马一嘉, 罗冰虹, 谭凯馨. 高温燃烧碘量法测定土壤中总硫含量的方法优化[J]. 中国无机分析化学, 2018, 8(3): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201806007.htm
Ma Y J, Luo B H, Tan K X. Optimization of method for determination of total in by high temperature combustion iodine method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(3): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201806007.htm
[4] 寇超, 史永波, 钟吕玲. 热分解前处理结合分光光度法快速测定土壤中的硫[J]. 应用化工, 2014, 43(6): 1152-1155. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201406050.htm
Kou C, Shi Y B, Zhong L L. Spectrophotometric determination of sulfur in the soil after pyrolysis[J]. Applied Chemical Industry, 2014, 43(6): 1152-1155. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201406050.htm
[5] 赵文志, 张填昊, 卢兵, 等. 粉末压片制样-波长色散X射线荧光光谱法测定土壤和水系沉积物中溴氯氟磷硫[J]. 冶金分析, 2021, 41(4): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202104004.htm
Zhao W Z, Zhang T H, Lu B, et al. Determination of bromine, chlorine, fluorine, phosphorus and sulfur in soil and steam sediment by wavelength dispersive X-ray fluorescence spectrometry with pressed power pellet[J]. Metallurgical Analysis, 2021, 41(4): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202104004.htm
[6] Gazulla M F, Gómez M P, Orduna M, et al. New methodology for sulfur analysis in geological samples by WD-XRF spectrometry[J]. X-Ray Spectrometry, 2009, 38: 3-8. doi: 10.1002/xrs.1092
[7] Oliveira J S S, Picoloto R S, Bizzi C A, et al. Microwave-assisted ultraviolet digestion of petroleum coke for the simultaneous determination of nickel, vanadium and sulfur by ICP-OES[J]. Talanta, 2015, 144: 1052-1058. doi: 10.1016/j.talanta.2015.07.060
[8] 林敏抒. 微波消解光度法测定土壤硫的方法研究[J]. 杭州师范学院学报(自然科学版), 2002, 1(3): 31-33. doi: 10.3969/j.issn.1674-232X.2002.03.009
Lin M S. Study on applicability of microwave digestion in the measurement of soil sulfur[J]. Journal of Hangzhou Teachers College(Natural Science Edition), 2002, 1(3): 31-33. doi: 10.3969/j.issn.1674-232X.2002.03.009
[9] 张明杰, 戴雪峰, 陆丁荣, 等. 高频燃烧-红外碳硫仪用于农用地土壤质量调查样品中碳硫的快速测定[J]. 岩矿测试, 2010, 29(2): 139-142. doi: 10.3969/j.issn.0254-5357.2010.02.011 http://www.ykcs.ac.cn/cn/article/id/ykcs_20100211
Zhang M J, Dai X F, Lu D R, et al. Rapid determination of carbon and sulfur in farm land soil samples by high frequency-infrared carbon-sulfur analyzer[J]. Rock and Mineral Analysis, 2010, 29(2): 139-142. doi: 10.3969/j.issn.0254-5357.2010.02.011 http://www.ykcs.ac.cn/cn/article/id/ykcs_20100211
[10] 莫达松, 刘守廷, 蒋天成, 等. 高频红外碳硫分析仪测定土壤、粘土中的硫[J]. 化学分析计量, 2007, 16(4): 54-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ200704020.htm
Mo D S, Liu S T, Jiang T C, et al. Determination of sulfur in soil and clays by high frequency infrared absorption spectrometer[J]. Chemical Analysis Metrology, 2007, 16(4): 54-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ200704020.htm
[11] 周文树, 房建设. 微波消解-电感耦合等离子体-原子发射光谱法测定剩余污泥中的全硫[J]. 分析仪器, 2008, 8(2): 18-20. doi: 10.3969/j.issn.1001-232X.2008.02.006
Zhou W S, Fang J S. Determination of total sulphur in sludge by ICP-AES using microwave digestion[J]. Analytical Instrumentation, 2008, 8(2): 18-20. doi: 10.3969/j.issn.1001-232X.2008.02.006
[12] 李冰, 马新荣, 杨红霞, 等. 封闭酸溶-电感耦合等离子体原子发射光谱法同时测定地质样品中硼砷硫[J]. 岩矿测试, 2003, 22(4): 241-247. http://www.ykcs.ac.cn/cn/article/id/ykcs_20030465
Li B, Ma X R, Yang H X, et al. Determination of boron, arsenic and sulfur in geological samples by inductively coupled plasma atomic emission spectrometry with sample treatment by pressurized decomposition[J]. Rock and Mineral Analysis, 2003, 22(4): 241-247. http://www.ykcs.ac.cn/cn/article/id/ykcs_20030465
[13] 刘泽斌, 刘守廷, 蒋天成, 等. 电感耦合等离子体原子发射光谱法测定土壤中全硫、全磷和全钾[J]. 中国土壤与肥料, 2017(4): 147-150. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201705025.htm
Liu Z B, Liu S T, Jiang T C, et al. Determination of total sulfur, total phosphorus and total potassium content in the soil by inductively coupled plasma atomic emission spectrometry[J]. Soil and Fertilizer Sciences in China, 2017(4): 147-150. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201705025.htm
[14] 张廷忠, 杨希胜. 电感耦合等离子体发射光谱法快速测定土壤中的硼与硫[J]. 甘肃冶金, 2012, 34(3): 105-107. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYE201203034.htm
Zhang T Z, Yang X S. Quick determination of boron and sulfur in soil by ICP[J]. Gansu Metallurgy, 2012, 34(3): 105-107. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYE201203034.htm
[15] 刘攀, 杜米芳, 唐伟, 等. 无机固体样品中硫的测定方法的研究进展[J]. 理化检验(化学分册), 2017, 53(8): 984-992. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201708032.htm
Liu P, Du M F, Tang W, et al. Recent advances of researches on determination methods for sulfur in inorganic solid samples[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(8): 984-992. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201708032.htm
[16] 王雪枫, 王佳佳. 微波消解-电感耦合等离子体发射光谱法测定土壤中的硫[J]. 化学分析计量, 2020, 29(3): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202003016.htm
Wang X F, Wang J J. Determination of sulfur in soil by microwave digestion-inductively coupled plasma atomic emission spectrometry[J]. Chemical Analysis Metrology, 2020, 29(3): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202003016.htm
[17] 赵海, 李灵凤. 电热板酸溶-电感耦合等离子体原子发射光谱法同时测定地质样品中的硼、砷、硫[J]. 中国资源综合利用, 2020, 38(8): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS202008006.htm
Zhao H, Li L F. Simultaneous determination of boron, arsenic and sulfur in geological samples by acid dissolution of electric heating plate-inductively coupled plasma atomic emission spectrometry[J]. China Resources Comprehensive Utilization, 2020, 38(8): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWZS202008006.htm
[18] 陈伟锐. 高频红外碳硫仪测定土壤和水系沉积物中的硫实验条件改进[J]. 岩矿测试, 2019, 38(1): 123-128. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201804160045
Chen W R. Improvement of experimental conditions for the determination of sulfur in soil and stream sediments by high-frequency infrared carbon and sulfur analyzer[J]. Rock and Mineral Analysis, 2019, 38(1): 123-128. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.201804160045
[19] 袁润蕾. CS878A型高频红外碳硫分析仪测定地质样品中碳、硫[J]. 化学工程师, 2019, 33(9): 31-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HXGC201909009.htm
Yuan R L. Determination of carbon and sulfur in geological samples by CS878A high frequency infrared carbon and sulfur analyzer[J]. Chemical Engineer, 2019, 33(9): 31-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HXGC201909009.htm
[20] 宾曦, 王娟, 刁正斌. 高频炉燃烧红外吸收法测定钛精矿中硫[J]. 冶金分析, 2020, 40(8): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202008015.htm
Bin X, Wang J, Diao Z B. Determination of sulfur in titanium concentrate by high frequency furnace combustion infrared absorption method[J]. Metallurgical Analysis, 2020, 40(8): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202008015.htm
[21] 杨小莉, 杨小丽, 曾美云. 等. 高频燃烧红外吸收法测定铜铅锌矿石中硫[J]. 冶金分析, 2020, 40(3): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202003009.htm
Yang X L, Yang X L, Zeng M Y, et al. Determination of sulfur in copper-lead-zinc ore by high frequency combustion infrared absorption method[J]. Metallurgical Analysis, 2020, 40(3): 44-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX202003009.htm
[22] 王巧玲, 张志峰, 肖宇, 等. 高频燃烧红外吸收法测定金属矿产品中的硫[J]. 化学分析计量, 2018, 27(4): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201804038.htm
Wang Q L, Zhang Z F, Xiao Y, et al Determination of sulfur in metallic mineral products by high frequency combustion infrared absorption[J]. Chemical Analysis and Metrology, 2018, 27(4): 89-93. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ201804038.htm
[23] 黄启华, 徐志强, 杨玮玮. 高频红外碳硫仪测定重晶石和黄铁矿中的硫[J]. 岩矿测试, 2017, 36(2): 130-135. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.2017.02.006
Huang Q H, Xu Z Q, Yang W W. Determination of sulfur in barite and pyrite by high frequency infrared carbon-sulfur spectrometer[J]. Rock and Mineral Analysis, 2017, 36(2): 130-135. http://www.ykcs.ac.cn/cn/article/doi/10.15898/j.cnki.11-2131/td.2017.02.006
[24] 龚仓, 付桂花, 黄艳波. 高频燃烧-红外碳硫仪测定岩心钻探样品中碳硫[J]. 黄金, 2016, 37(12): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201612025.htm
Gong C, Fu G H, Huang Y B. Determination of carbon and sulfur in drilling core samples by high frequency combustion infrared carbon and sulfur analyzer[J]. Gold, 2016, 37(12): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201612025.htm
[25] 杨旭龙. 高频红外碳硫仪测定土壤中硫的方法优化[J]. 化学工程师, 2021, 35(3): 76-78, 82. https://www.cnki.com.cn/Article/CJFDTOTAL-HXGC202103024.htm
Yang X L. Optimization of the method of high-frequency infrared carbon-sulfur analyzer for determining sulfur in soil[J]. Chemical Engineer, 2021, 35(3): 76-78, 82. https://www.cnki.com.cn/Article/CJFDTOTAL-HXGC202103024.htm
[26] 许刚. X射线荧光光谱与碳硫仪联用测定土壤样品中的硫[J]. 化学与粘合, 2019, 41(6): 486-488. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYZ201906022.htm
Xu G. Determination of sulfur in soil samples by the X-ray fluorescence spectrometry and carbon sulfur analyzer[J]. Adhesion, 2019, 41(6): 486-488. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYZ201906022.htm
[27] 耶曼, 张华, 李湘, 等. 高频红外碳硫仪测定土壤、水系沉积物和矿石中的硫[J]. 化学分析计量, 2021, 30(6): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202106013.htm
Ye M, Zhang H, Li X, et al. Determination of sulfur in soil, stream sediment and ore by high frequency infrared carbon and sulfur analyzer[J]. Chemical Analysis and Metrology, 2021, 30(6): 48-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFJ202106013.htm
[28] 赵庆令, 李清彩. 电感耦合等离子体发射光谱法同时测定土壤样品中54种组分[J]. 岩矿测试, 2011, 30(1): 75-78. http://www.ykcs.ac.cn/cn/article/id/ykcs_20110116
Zhao Q L, Li Q C. Simultaneous determination of 54 components in soil samples by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2011, 30(1): 75-78. http://www.ykcs.ac.cn/cn/article/id/ykcs_20110116
-