-
摘要:
氟是存在于自然环境中的一种人体必需的微量元素,其在环境中的缺乏或过剩可能导致健康问题。本文综述了氟在自然界如大气、岩石、土壤、水体、植物中的来源,分析了其形态及含量受环境影响的因素如地形、雨水淋溶、土壤母质、土壤酸碱度、土壤有机质等。氟的来源广泛,目前全球超过2.6亿人受氟带来的环境问题影响,因此开展健康风险评估具有重要意义。氟的健康风险评估常用的风险评估模型有危害系数(Hazard Quotient)、危害指数(Hazard Index),概率方法也常运用于风险分析中,目前还出现应用多途径暴露评估法对氟进行评估,不确定性和灵敏度的研究对于评估模型尤为关键。本文比较了传统模型的可行性和局限性,认为确定氟富集的途径,完善复合暴露评估的模式,考虑氟摄入的生物有效性,对于氟的健康风险评估十分必要;氟的健康风险评估下一步的研究还可以趋向于使用模型对氟的风险进行预测;对于氟的来源、赋存状态、迁移途径以及含量影响因素等仍然需要深入了解,全面评估其带来的健康风险。
Abstract:BACKGROUND Fluorine is an essential trace element that exists in the natural environment, and its deficiency or excess in the environment can cause health problems.
OBJECTIVES To summarize the research progress of sources of fluorine in the environment and to assess the risk to health.
METHODS The sources of fluorine in the natural atmosphere, rocks, soils, water, and plants, were reviewed, and the factors affecting its form and content by the environment were analyzed, such as topography, rain leaching, soil parent material, soil pH, soil organic matter and geochemical behavior.
RESULTS Fluorine has a wide range of sources. At present, more than 260 million people in the world have been affected by environmental problems caused by fluorine. Therefore, it is of great significance to carry out a health risk assessment. The common health risk assessment models of fluorine include Hazard Quotient and Hazard Index. Probabilistic methods are often used in risk analysis. At present, there are also applications of multi-channel exposure assessment methods to assess fluorine. The feasibility and limitations of traditional models were compared.
CONCLUSIONS It is necessary to consider the uncertainty and sensitivity of the health risk assessment models, determine the fluorine enrichment pathway, improve the combined exposure assessment models, and consider the bioavailability of fluorine intake for health risk assessment of fluorine. The next step of research on health risk assessment of fluorine can use models to predict the risks of fluorine. It is still necessary to have a deep understanding of the source, occurrences, migration path and content influencing factors of fluorine to assess the health risks.
-
Key words:
- fluorine /
- atmosphere /
- rock /
- soil /
- water /
- influencing factors /
- health risk assessment
-
-
图 5 氟的摄入和迁移途径[34]
Figure 5.
表 1 不同类型岩石中的氟化物含量
Table 1. Fluoride concentration in different types of rocks
岩石类型 岩石类别 氟化物含量(mg/kg) 文献来源 变质岩 板岩 1873 Singh等(2018)[33]
Kabir(2020)[34]片岩 1703 片麻岩 1563 花岗岩 1043 玄武岩 360 硅石岩 982 沉积岩 砾岩 963 Singh等(2018)[33]Kabir(2020)[34] 磷灰石 31000 石灰石 1200 砂岩 903 页岩 800 Mukherjee等(2018)[6] 海相页岩 1300 Apambire等(1997)[35] 火山岩 - 2000 Apambire等(1997)[35] 碱性火成岩 - 1300 Apambire等(1997)[35] 超镁铁质岩石和石灰岩 - 100 Apambire等(1997)[35] 煤(灰) - 80 Mukherjee等(2018)[6] 注:“-”表示无更小的类别。 表 2 全球不同土壤中的氟化物平均值
Table 2. Fluoride concentration in different soils from worldwide
表 3 不同国家的饮用水中氟化物限值
Table 3. Recommendations for fluoride limits in drinking water in different countries
国家 饮用水中氟化物限值(mg/L) 文献来源 中国 1.0 Wang等(2013)[46] 美国 0.7~1.2 Li等(2001)[47] 加拿大 0.8~1.0 Li等(2001)[47] 马拉维 6.0 Addison等(2020)[48] 墨西哥 <1.5 Guzmán等(2016)[49] 印度 1.0~1.5 Kashyap等(2021)[50] 巴基斯坦 ≤1.5 Lacson等(2021)[51] 新加坡 1.0 Lacson等(2021)[51] 澳大利亚 1.5 Lacson等(2021)[51] 意大利 1.5 Lacson等(2021)[51] 蒙古 0.7~1.5 Lacson等(2021)[51] 尼泊尔 0.5~1.5 Lacson等(2021)[51] 波兰 <1.5 Lacson等(2021)[51] 越南 1.5 Lacson等(2021)[51] 表 4 不同植物中的氟化物含量
Table 4. Fluoride concentration in different plant species
表 5 全球五大氟化带的不同国家和地区及其与全球构造带的关系[58-59]
Table 5. The five major fluoride belts in the world and their relationship with the global tectonic belts[58-59]
氟化带 分布国家 相关构造地区 1带 土耳其,叙利亚,约旦,埃及,苏丹,索马里,埃塞俄比亚,坦桑尼亚,肯尼亚,莫桑比克,南非 沿着非洲裂谷带 2带 埃及,利比亚,阿尔及利亚,摩洛哥,西撒哈拉,毛里塔尼亚 沿着西非移动带 3带 土耳其,伊拉克,伊朗,阿富汗,巴基斯坦,印度,泰国北部,中国 古地中海的活动带 4带 洛基山,墨西,中美洲,哥伦比亚,秘鲁,玻利维亚,安第斯山脉 火山带 5带 日本,菲律宾,印度尼西亚 火山带 表 6 氟的不同风险评估方法优缺点的比较
Table 6. Comparison of different fluoride risk assessment methods
氟健康风险评估方法 优点 缺点 危害系数法、危害指数法 应用广泛,数据及专业要求较低,评估简单高效 不确定性高 概率法 最小化评估中的误差和干扰,更贴近实际结果 数据及专业要求较高 多途径暴露评估法 考虑多种暴露途径,评估结果更全面 未考虑摄入氟化物的有效性,仅单纯累加 -
[1] Choubisa S L, Choubisa D, Wong M, et al. Status of industrial fluoride pollution and its diverse adverse health effects in man and domestic animals in India[J]. Environmental Science and Pollution Research International, 2016, 23(8): 7244-7254. doi: 10.1007/s11356-016-6319-8
[2] 谢正苗, 吴卫红, 徐建民. 环境中氟化物的迁移和转化及其生态效应[J]. 环境科学进展, 1999, 7(2): 41-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ902.005.htm
Xie Z M, Wu W H, Xu J M. Translocation and transfromation of fluorides in the environment and their biological effects[J]. Advances in Environmental Science, 1999, 7(2): 41-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ902.005.htm
[3] 李仪, 桂腾越, 燕倩, 等. 贵阳市主要饮用水源地水中氟化物含量与健康风险评价[J]. 贵州师范学院学报, 2019, 35(6): 10-14. doi: 10.3969/j.issn.1674-7798.2019.06.003
Li Y, Gui T Y, Yan Q, et al. Assessment of the fluoride content and health risk in the water of main drinking water sources of Guiyang City[J]. Journal of Guizhou Education University, 2019, 35(6): 10-14. doi: 10.3969/j.issn.1674-7798.2019.06.003
[4] Sharma D, Singh A, Verma K, et al. Fluoride: A review of pre-clinical and clinical studies[J]. Environmental Toxicology and Pharmacology, 2017, 56: 297-313. doi: 10.1016/j.etap.2017.10.008
[5] 李静, 谢正苗, 徐建明. 我国氟的土壤环境质量指标与人体健康关系的研究概况[J]. 土壤通报, 2006, 37(1): 194-199. doi: 10.3321/j.issn:0564-3945.2006.01.042
Li J, Xie Z M, Xu J M. Research progress in the relationship between soil environmental quality index of fluorine and human health in China[J]. Chinese Journal of Soil Science, 2006, 37(1): 194-199. doi: 10.3321/j.issn:0564-3945.2006.01.042
[6] Mukherjee I, Singh U K. Groundwater fluoride contamination, probable release, and containment mechanisms: A review on Indian context[J]. Environ Geochem Health, 2018, 40(6): 2259-2301. doi: 10.1007/s10653-018-0096-x
[7] Alarcón-Herrera M T, Martin-Alarcon D A, Gutiérrez M, et al. Co-occurrence, possible origin, and health-risk assessment of arsenic and fluoride in drinking water sources in Mexico: Geographical data visualization[J]. Science of the Total Environment, 2020, 698: 134168. doi: 10.1016/j.scitotenv.2019.134168
[8] Skórka-Majewicz M, Goschorska M, żwierełło W, et al. Effect of fluoride on endocrine tissues and their secretory functions-Review[J]. Chemosphere, 2020, 260: 127565. doi: 10.1016/j.chemosphere.2020.127565
[9] Adeyeye O A, Xiao C, Zhang Z, et al. Groundwater fluoride chemistry and health risk assessment of multi-aquifers in Jilin Qianan, northeastern China[J]. Ecotoxicology and Environmental Safety, 2021, 211: 111926. doi: 10.1016/j.ecoenv.2021.111926
[10] Wu L, Fan C, Zhang Z, et al. Association between fluoride exposure and kidney function in adults: A cross-sectional study based on endemic fluorosis area in China[J]. Ecotoxicology and Environmental Safety, 2021, 225: 112735. doi: 10.1016/j.ecoenv.2021.112735
[11] Amalraj A, Pius A. Health risk from fluoride exposure of a population in selected areas of Tamil Nadu South India[J]. Food Science and Human Wellness, 2013, 2(2): 75-86. doi: 10.1016/j.fshw.2013.03.005
[12] 王根绪, 程国栋. 西北干旱区水中氟的分布规律及环境特征[J]. 地理科学, 2000, 20(2): 153-159. doi: 10.3969/j.issn.1000-0690.2000.02.011
Wang G X, Cheng G D. The distributing regularity of fluorine and its environmental characteristics in arid area of northwest China[J]. Scientia Geographica Sinica, 2000, 20(2): 153-159. doi: 10.3969/j.issn.1000-0690.2000.02.011
[13] Amini M, Mueller K, Abbaspour K C, et al. Statistical modeling of global geogenic fluoride contamination in groundwaters[J]. Environmental Science & Technology, 2008, 42(10): 3662-3668. http://pubs.acs.org/doi/10.1021/es702859e
[14] Mukherjee I, Singh U K. Exploring a variance decomposition approach integrated with the Monte Carlo method to evaluate groundwater fluoride exposure on the residents of a typical fluorosis endemic semi-arid tract of India[J]. Environmental Research, 2022, 203: 111697. doi: 10.1016/j.envres.2021.111697
[15] Raju N J. Prevalence of fluorosis in the fluoride enriched groundwater in semi-arid parts of eastern India: Geochemistry and health implications[J]. Quaternary International, 2017, 443: 265-278. doi: 10.1016/j.quaint.2016.05.028
[16] 张杰, 周金龙, 乃尉华, 等. 叶尔羌河流域平原区高氟地下水成因分析[J]. 干旱区资源与环境, 2020, 34(4): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202004017.htm
Zhang J, Zhou J L, Nai W H, et al. Characteristics of high fluoride groundwater in plain of Yarkant River Basin in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2020, 34(4): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202004017.htm
[17] 郝启勇, 徐晓天, 张心彬, 等. 鲁西北阳谷地区浅层高氟地下水化学特征及成因[J]. 地球科学与环境学报, 2020, 42(5): 668-677. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202005008.htm
Hao Q Y, Xu X T, Zhang X B, et al. Hydrochemical characteristics and genesis of high-flourine shallow groundwater in Yanggu area of the northwestern Shandong, China[J]. Journal of Earth Sciences and Environment, 2020, 42(5): 668-677. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202005008.htm
[18] 刘春华, 王威, 卫政润, 等. 微山湖流域高氟地下水的成因分析[J]. 地球学报, 2018, 39(3): 351-357. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201803009.htm
Liu C H, Wang W, Wei Z R, et al. Distribution characteristics and genesis of high fluoride groundwater in Weishan Lake watershed[J]. Acta Geoscientica Sinica, 2018, 39(3): 351-357. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201803009.htm
[19] 杨振宁. 鲁北高氟地下水形成的水化学及水循环演化作用分析[D]. 北京: 中国地质大学(北京), 2016.
Yang Z N. The influence of hydrochemistry and water cycle for the formation of high fluorosis groundwater in northern plain of Shandong Province[D]. Beijing: China University of Geosciences (Beijing), 2016.
[20] Wen D, Zhang F, Zhang E, et al. Arsenic, fluoride and iodine in groundwater of China[J]. Journal of Geochemical Exploration, 2013, 135: 1-21. doi: 10.1016/j.gexplo.2013.10.012
[21] Meenakshi, Maheshwari R C. Fluoride in drinking water and its removal[J]. Journal of Hazardous Materials, 2006, 137(1): 456-463. doi: 10.1016/j.jhazmat.2006.02.024
[22] 赵艳, 刘开泰, 薛茜. 我国饮水型氟中毒预防措施效果评价[J]. 中国地方病学杂志, 2006, 25(2): 222-224. doi: 10.3760/cma.j.issn.1000-4955.2006.02.046
Zhao Y, Liu K T, Xue Q. Evaluation the effect of preventive measures on drinking-water-type fluorosis in China[J]. Chinese Journal of Endemiology, 2006, 25(2): 222-224. doi: 10.3760/cma.j.issn.1000-4955.2006.02.046
[23] Zhang L, Huang D, Yang J, et al. Probabilistic risk assessment of Chinese residents' exposure to fluoride in improved drinking water in endemic fluorosis areas[J]. Environmental Pollution, 2017, 222: 118-125. doi: 10.1016/j.envpol.2016.12.074
[24] 何令令, 何守阳, 陈琢玉, 等. 环境中氟污染与人体氟效应[J]. 地球与环境, 2020, 48(1): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202001011.htm
He L L, He S Y, Chen Z Y, et al. Fluorine pollution in the environment and human fluoride effect[J]. Earth and Environment, 2020, 48(1): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202001011.htm
[25] Ozsvath L D. Fluoride and environmental health: A review[J]. Reviews in Environmental Science and Biotechnology, 2009, 8(1): 59-79. doi: 10.1007/s11157-008-9136-9
[26] Cronin S J, Neall V E, Lecointre J A, et al. Environmental hazards of fluoride in volcanic ash: A case study from Ruapehu Volcano, New Zealand[J]. Journal of Volcanology and Geothermal Research, 2003, 121(3-4): 271-291. doi: 10.1016/S0377-0273(02)00465-1
[27] Rezaei M, Nikbakht M, Shakeri A. Geochemistry and sources of fluoride and nitrate contamination of groundwater in Lar area, South Iran[J]. Environmental Science and Pollution Research, 2017, 24(18): 15471-15487. doi: 10.1007/s11356-017-9108-0
[28] 杨朔, 陈辉伦, 盖楠, 等. 北京市大气颗粒物中全氟烷基化合物的粒径分布特征[J]. 岩矿测试, 2018, 37(5): 549-557. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.20180620074
Yang S, Chen H L, Gai N, et al. Particle size distribution of perfluoroalkyl substances in atmospheric particulate matter in Beijing[J]. Rock and Mineral Analysis, 2018, 37(5): 549-557. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.20180620074
[29] Feng Y W, Ogura N, Feng Z W, et al. The concentrations and sources of fluoride in atmospheric depositions in Beijing, China[J]. Water Air and Soil Pollution, 2003, 145(1): 95-107. doi: 10.1023/A:1023680112474
[30] Chae G, Yun S, Mayer B, et al. Fluorine geochemistry in bedrock groundwater of South Korea[J]. Science of the Total Environment, 2007, 385(1-3): 272-283. doi: 10.1016/j.scitotenv.2007.06.038
[31] Ozsvath, L D. Fluoride concentrations in a crystalline bedrock aquifer Marathon County, Wisconsin[J]. Environmental Geology, 2006, 50(1): 132-138. doi: 10.1007/s00254-006-0192-6
[32] Yang Q, Jung H B, Culbertson C W, et al. Spatial pattern of groundwater arsenic occurrence and association with bedrock geology in greater Augusta, maine[J]. Environmental Science & Technology, 2009, 43(8): 2714-2719. http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=PMC2694612&blobtype=pdf
[33] Singh G, Kumari B, Sinam G, et al. Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective-A review[J]. Environmental Pollution, 2018, 239: 95-108. doi: 10.1016/j.envpol.2018.04.002
[34] Kabir H, Gupta A K, Tripathy S. Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(11): 1116-1193. doi: 10.1080/10643389.2019.1647028
[35] Apambire W B, Boyle D R, Michel F A. Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana[J]. Environmental Geology, 1997, 33(1): 13-24. doi: 10.1007/s002540050221
[36] Obst M, Schmid G. 3D chemical mapping: Application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences[J]. Methods in Molecular Biology, 2014, 1117: 757-781. http://link.springer.com/protocol/10.1007/978-1-62703-776-1_34
[37] Cronin S J, Manoharan V, Hedley M J, et al. Fluoride: A review of its fate, bioavailability, and risks of fluorosis in grazed-pasture systems in New Zealand[J]. New Zealand Journal of Agricultural Research, 2000, 43(3): 295-321. doi: 10.1080/00288233.2000.9513430
[38] Lv L, He J, Wei M, et al. Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides[J]. Journal of Hazardous Materials, 2006, 133(1-3): 119-128. doi: 10.1016/j.jhazmat.2005.10.012
[39] Fuge R. Fluorine in the environment, a review of its sources and geochemistry[J]. Applied Geochemistry, 2019, 100: 393-406. doi: 10.1016/j.apgeochem.2018.12.016
[40] 易春瑶, 汪丙国, 靳孟贵. 水-土-植物系统中氟迁移转化规律的研究进展[J]. 安全与环境工程, 2013, 20(6): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201306012.htm
Yi C Y, Wang B G, Jin M G. Research progress of migration and transformation laws of fluoride in groundwater-soil-plant system[J]. Safety and Environmental Engineering, 2013, 20(6): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201306012.htm
[41] 范晨子, 刘永兵, 赵文博, 等. 云南安宁水系沉积污染物分布特征与风险评价[J]. 岩矿测试, 2021, 40(4): 570-582. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202103080035
Fan C Z, Liu Y B, Zhao W B, et al. Pollution distribution characteristics and ecological risk assessment of heavy metals and polycyclic aromatic hydrocarbons in the river sediments in Anning, Yunnan Province[J]. Rock and Mineral Analysis, 2021, 40(4): 570-582. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.202103080035
[42] Sarkar M, Banerjee A, Pramanick P P, et al. Use of laterite for the removal of fluoride from contaminated drinking water[J]. Journal of Colloid and Interface Science, 2006, 302(2): 432-441. doi: 10.1016/j.jcis.2006.07.001
[43] Li Z L, Tainosho Y, Shiraishi K, et al. Chemical characteristics of fluorine-bearing biotite of early Paleozoic plutonic rocks from the Sor Rondane Mountains, East Antarctica[J]. Geochemical Journal, 2003, 37(2): 145-161. doi: 10.2343/geochemj.37.145
[44] Solanki Y S, Agarwal M, Gupta A B, et al. Fluoride occur-rences, health problems, detection, and remediation methods for drinking water: A comprehensive review[J]. Science of the Total Environment, 2022, 807: 150601. doi: 10.1016/j.scitotenv.2021.150601
[45] Ali S, Fakhri Y, Golbini M, et al. Concentration of flu-oride in groundwater of India: A systematic review, meta-analysis and risk assessment[J]. Groundwater for Sustainable Development, 2019, 9: 100224. doi: 10.1016/j.gsd.2019.100224
[46] Wang B Y, Chen Z L, Zhu J, et al. Pilot-scale fluoride-containing wastewater treatment by the ballasted flocculation process[J]. Water Science and Technology, 2013, 68(1): 134-143. doi: 10.2166/wst.2013.204
[47] Li Y M, Liang C K, Slemenda C W, et al. Effect of long-term exposure to fluoride in drinking water on risks of bone fractures[J]. Journal of Bone and Mineral Research, 2001, 16(5): 932-939. doi: 10.1359/jbmr.2001.16.5.932
[48] Addison M J, Rivett M O, Robinson H, et al. Fluoride occurrence in the lower East African Rift System, Southern Malawi[J]. Science of the Total Environment, 2020, 712: 136260. doi: 10.1016/j.scitotenv.2019.136260
[49] Guzmán A, Nava J L, Coreño O, et al. Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor[J]. Chemosphere, 2016, 144: 2113-2120. doi: 10.1016/j.chemosphere.2015.10.108
[50] Kashyap S J, Sankannavar R, Madhu G M. Fluoride sources, toxicity and fluorosis management techniques-A brief review[J]. Journal of Hazardous Materials Letters, 2021, 2: 100033. doi: 10.1016/j.hazl.2021.100033
[51] Lacson C F Z, Lu M, Huang Y. Fluoride- containing water: A global perspective and a pursuit to sustainable water defluoridation management-An overview[J]. Journal of Cleaner Production, 2021, 280: 124236. doi: 10.1016/j.jclepro.2020.124236
[52] Chavoshi E, Afyuni M, Hajabbasi M A, et al. Health risk assessment of fluoride exposure in soil, plants, and water at Isfahan, Iran[J]. Human and Ecological Risk Assessment, 2011, 17(2): 414-430. doi: 10.1080/10807039.2011.552397
[53] Elloumi N, Ben Abdallah F, Mezghani I, et al. Effect of fluoride on almond seedlings in culture solution[J]. Fluoride, 2005, 38(3): 193-198.
[54] Ruan J Y, Ma L F, Shi Y Z, et al. The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis L. )[J]. Annals of Botany, 2004, 93(1): 97-105. doi: 10.1093/aob/mch010
[55] Barbier O, Arreola-Mendoza L, Maria Del Razo L. Molecular mechanisms of fluoride toxicity[J]. Chemico-Biological Interactions, 2010, 188: 319-333. doi: 10.1016/j.cbi.2010.07.011
[56] Yadav K K, Kumar S, Quoc B P, et al. Fluoride con-tamination, health problems and remediation methods in Asian groundwater: A comprehensive review[J]. Ecotoxicology and Environmental Safety, 2019, 182. http://www.sciencedirect.com/science/article/pii/S0147651319306839
[57] Mumtaz N, Pandey G, Labhasetwar P K. Global fluoride occurrence, available technologies for fluoride removal and electrolytic defluoridation: A review[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(21): 2357-2389. doi: 10.1080/10643389.2015.1025638
[58] Tanouayi G, Gnandi K, Ouro-Sama K, et al. Distribution of fluoride in the phosphorite mining area of Hahotoe-Kpogame (Togo)[J]. Journal of Health & Pollution, 2016, 6(10): 84-94. http://www.journalhealthpollution.org/doi/pdf/10.5696/2156-9614-6.10.84?code=bsie-site
[59] Chowdhury A, Adak M K, Mukherjee A, et al. A critical review on geochemical and geological aspects of fluoride belts, fluorosis and natural materials and other sources for alternatives to fluoride exposure[J]. Journal of Hydrology, 2019, 574: 333-359. doi: 10.1016/j.jhydrol.2019.04.033
[60] 桂建业, 韩占涛, 张向阳, 等. 土壤中氟的形态分析[J]. 岩矿测试, 2008, 27(4): 284-286. http://www.ykcs.ac.cn/article/id/ykcs_20080495
Gui J Y, Han Z T, Zhang X Y, et al. Rock and mineral analysis[J]. Rock and Mineral Analysis, 2008, 27: 284-286. http://www.ykcs.ac.cn/article/id/ykcs_20080495
[61] 王滨滨, 郑宝山, 廖昂. 氟在土壤中的富集与淋滤[J]. 矿物学报, 2010, 30(4): 496-500. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201004016.htm
Wang B B, Zheng B S, Liao A. Fluoride enrichment and leaching in the soil: A review[J]. Acta Mineralogica Sinica, 2010, 30(4): 496-500. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201004016.htm
[62] 焦有, 宝德俊, 尹川芬. 氟的土壤地球化学[J]. 土壤通报, 2000, 31(6): 251-254. doi: 10.3321/j.issn:0564-3945.2000.06.013
Jiao Y, Bao D J, Yin C F. Geochemistry of fluorine[J]. Chinese Journal of Soil Science, 2000, 31(6): 251-254. doi: 10.3321/j.issn:0564-3945.2000.06.013
[63] 何锦, 张福存, 韩双宝, 等. 中国北方高氟地下水分布特征和成因分析[J]. 中国地质, 2010, 37(3): 621-626. doi: 10.3969/j.issn.1000-3657.2010.03.012
He J, Zhang F C, Han S B, et al. The distribution and genetic types of high-fluoride groundwater in northern China[J]. Geology in China, 2010, 37(3): 621-626. doi: 10.3969/j.issn.1000-3657.2010.03.012
[64] 汤洁, 卞建民, 李昭阳, 等. 松嫩平原氟中毒区地下水氟分布规律和成因研究[J]. 中国地质, 2010, 37(3): 614-620. doi: 10.3969/j.issn.1000-3657.2010.03.011
Tang J, Bian J M, Li Z Y, et al. The distribution regularity and causes of fluoride in groundwater of the fluorosis area, Songnen Plain[J]. Geology in China, 2010, 37(3): 614-620. doi: 10.3969/j.issn.1000-3657.2010.03.011
[65] 孟伟, 潘自平, 何邵麟, 等. 西南氟病区典型高氟土壤的地球化学特征及氟富集原因[J]. 地球与环境, 2012, 40(2): 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201202003.htm
Meng W, Pan Z P, He S L, et al. Element geochemistry and fluoride enrichment mechanism in high-fluoride soils of endemic fluorosis-affected areas in southwest china[J]. Earth and Environment, 2012, 40(2): 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201202003.htm
[66] 何世春. 氟的富集规律[J]. 东华理工大学学报(自然科学版), 1990, 13(1): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ199001011.htm
He S C. The concentrate law of flouride[J]. Journal of East China College of Geology (Natural Science), 1990, 13(1): 88-97. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ199001011.htm
[67] 袁立竹, 王加宁, 马春阳, 等. 土壤氟形态与氟污染土壤修复[J]. 应用生态学报, 2019, 30(1): 10-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201901002.htm
Yuan L Z, Wang J N, Ma C Y, et al. Fluorine speciation in soil and the remediation of fluorine contaminated soil[J]. Chinese Journal of Applied Ecology, 2019, 30(1): 10-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201901002.htm
[68] 陈劲松, 周金龙, 陈云飞, 等. 新疆喀什地区地下水氟的空间分布规律及其富集因素分析[J]. 环境化学, 2020, 39(7): 1800-1808. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202007007.htm
Chen J S, Zhou J L, Chen Y F, et al. Spatial distribution and enrichment factors of groundwater fluoride in Kashgar Region, Xinjiang[J]. Environmental Chemistry, 2020, 39(7): 1800-1808. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202007007.htm
[69] 刘海燕, 刘茂涵, 张卫民, 等. 华北平原高氟地下水中稀土元素分布和分异特征[J]. 地学前缘, 2021: 1-16.
Liu H Y, Liu M H, Zhang W M, et al. Distribution and fractionation of rare earth elements in high-fluoride groundwater from the North China Plain[J]. Earth Science Frontiers, 2021: 1-16.
[70] 龚子同, 黄标. 土壤中硒、氟、碘元素的空间分异与人类健康[J]. 土壤学进展, 1994, 22(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJZ199405000.htm
Gong Z T, Huang B. Spatial distribution of selenium, fluorine and iodine in soil for human health[J]. Progress in Soil Science, 1994, 22(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJZ199405000.htm
[71] 杨彦, 陆晓松, 李定龙. 我国环境健康风险评价研究进展[J]. 环境与健康杂志, 2014, 31(4): 357-363. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201404029.htm
Yang Y, Lu X S, Li D L. Research progress of environmental health risk assessment in China[J]. Journal of Environment and Health, 2014, 31(4): 357-363. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201404029.htm
[72] 赵庆令, 李清彩, 谢江坤, 等. 鲁中南地区双村岩溶水系统地下水中化学致癌物和非致癌物的健康风险评价[J]. 岩矿测试, 2016, 35(1): 90-97. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.015
Zhao Q L, Li Q C, Xie J K, et al. Health risk assessment of carcinogenic and non-carcingenic substances in underground water from the Shuangcun karst system of central southern Shandong Province[J]. Rock and Mineral Analysis, 2016, 35(1): 90-97. http://www.ykcs.ac.cn/article/doi/10.15898/j.cnki.11-2131/td.2016.01.015
[73] 侯捷, 曲艳慧, 宁大亮, 等. 我国居民暴露参数特征及其对风险评估的影响[J]. 环境科学与技术, 2014, 37(8): 179-187. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201408035.htm
Hou J, Qu Y H, Ning D L, et al. Characteristics of human exposure factors in China and their uncertainty analysis in health risk assessment[J]. Environmental Science & Technology, 2014, 37(8): 179-187. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201408035.htm
[74] 张映映, 冯流, 刘征涛. 长江口区域水体半挥发性有机污染物健康风险评价[J]. 环境科学研究, 2007, 20(1): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX200701003.htm
Zhang Y Y, Feng L, Liu Z T. Health risk assessment on semivolatile organic compounds in water of Yangtze Estuary area[J]. Research of Environmental Sciences, 2007, 20(1): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX200701003.htm
[75] 段小丽, 王宗爽, 王贝贝, 等. 我国北方某地区居民饮水暴露参数研究[J]. 环境科学研究, 2010, 23(9): 1216-1220. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201009019.htm
Duan X L, Wang Z S, Wang B B, et al. Drinking water-related exposure factors in a typical area of northern China[J]. Research of Environmental Sciences, 2010, 23(9): 1216-1220. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201009019.htm
[76] 段小丽, 黄楠, 王贝贝, 等. 国内外环境健康风险评价中的暴露参数比较[J]. 环境与健康杂志, 2012, 29(2): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201202001.htm
Duan X L, Huang N, Wang B B, et al. Development of exposure factors research methods in environmental health risk assessment[J]. Journal of Environment and Health, 2012, 29(2): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ201202001.htm
[77] 段小丽, 王宗爽, 李琴, 等. 基于参数实测的水中重金属暴露的健康风险研究[J]. 环境科学, 2011, 32(5): 1329-1339. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201105017.htm
Duan X L, Wang Z S, Li Q, et al. Health risk assessment of heavy metals in drinking water based on field measurement of exposure factors of Chinese people[J]. Environmental Science, 2011, 32(5): 1329-1339. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201105017.htm
[78] 王宗爽, 段小丽, 刘平, 等. 环境健康风险评价中我国居民暴露参数探讨[J]. 环境科学研究, 2009, 22(10): 1164-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX200910008.htm
Wang Z S, Duan X L, Liu P, et al. Human exposure factors of Chinese people in environmental health risk assessment[J]. Research of Environmental Sciences, 2009, 22(10): 1164-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX200910008.htm
[79] Jha S K, Nayak A K, Sharma Y K. Potential fluoride contamination in the drinking water of Marks Nagar, Unnao District, Uttar Pradesh, India[J]. Environmental Geochemistry and Health, 2010, 32(3): 217-226. http://www.onacademic.com/detail/journal_1000034500829610_33e3.html
[80] Hu Y, You M, Liu G, et al. Spatial distribution and potential health risk of fluoride in drinking groundwater sources of Huaibei, Anhui Province[J]. Scientific Reports, 2021, 11(1): 8371. http://www.nature.com/articles/s41598-021-87699-6?utm_source=other&utm_medium=other&utm_content=null
[81] Narsimha A, Hui Q, Nandan M J M. Groundwater chem-istry integrating the pollution index of groundwater and evaluation of potential human health risk: A case study from hard rock terrain of South India[J]. Ecotoxicology and Environmental Safety, 2020, 206: 111217. http://www.sciencedirect.com/science/article/pii/S0147651320310563
[82] 赵锁志, 王喜宽, 黄增芳, 等. 内蒙古河套地区高氟水成因分析[J]. 岩矿测试, 2007, 26(4): 320-324. http://www.ykcs.ac.cn/article/id/ykcs_200704103
Zhao S Z, Wang X K, Huang Z F, et al. Study on formation causes of high fluorine groundwater in Hetao area of Inner Mongolia[J]. Rock and Mineral Analysis, 2007, 26(4): 320-324. http://www.ykcs.ac.cn/article/id/ykcs_200704103
[83] Musah S Z, Emmanuel D S, Mahamuda A, et al. Hydro-geochemical controls and human health risk assessment of groundwater fluoride and boron in the semi-arid North East region of Ghana[J]. Journal of Geochemical Exploration, 2019, 207: 106363. http://www.sciencedirect.com/science/article/pii/S0375674219301906
[84] Zang F, Wang S, Nan Z, et al. Accumulation, spatio-temporal distribution, and risk assessment of heavy metals in the soil-corn system around a polymetallic mining area from the Loess Plateau, northwest China[J]. Geoderma, 2017, 305: 188-196.
[85] Ahada C P S, Suthar S. Assessment of human health risk associated with high groundwater fluoride intake in southern districts of Punjab, India[J]. Exposure and Health, 2019, 11(4): 267-275. http://www.researchgate.net/profile/Chetan_Ahada2/publication/321945264_Assessment_of_Human_Health_Risk_Associated_with_High_Groundwater_Fluoride_Intake_in_Southern_Districts_of_Punjab_India/links/5a3c8704a6fdcc21d8780994/Assessment-of-Human-Health-Risk-Associated-with-High-Groundwater-Fluoride-Intake-in-Southern-Districts-of-Punjab-India.pdf
[86] Li Y, Wang S, Nan Z, et al. Accumulation, fractionation and health risk assessment of fluoride and heavy metals in soil-crop systems in northwest China[J]. Science of the Total Environment, 2019, 663: 307-314. http://www.onacademic.com/detail/journal_1000041594306599_de73.html
[87] Rahman M M, Bodrud-Doza M, Siddiqua M T, et al. Spatiotemporal distribution of fluoride in drinking water and associated probabilistic human health risk appraisal in the coastal region, Bangladesh[J]. Science of the Total Environment, 2020, 724: 138316. http://www.sciencedirect.com/science/article/pii/S0048969720318295
[88] Enalou H B, Moore F, Keshavarzi B, et al. Source apportionment and health risk assessment of fluoride in water resources, south of Fars province, Iran: Stable isotopes (delta O-18 and delta D) and geochemical modeling approaches[J]. Applied Geochemistry, 2018, 98: 197-205. http://www.onacademic.com/detail/journal_1000040857377210_3248.html
[89] Liu J, Peng Y, Li C, et al. A characterization of gro-und water fluoride, influencing factors and risk to human health in the southwest plain of Shandong Province, North China[J]. Ecotoxicology and Environmental Safety, 2021, 207. http://www.sciencedirect.com/science/article/pii/S014765132031349X
[90] He L, Tu C, He S, et al. Fluorine enrichment of vegetables and soil around an abandoned aluminium plant and its risk to human health[J]. Environmental Geochemistry and Health, 2021, 43(3): 1137-1154. http://www.researchgate.net/publication/340892602_Fluorine_enrichment_of_vegetables_and_soil_around_an_abandoned_aluminium_plant_and_its_risk_to_human_health
[91] Fan Y, Zhu T, Li M, et al. Heavy metal contamination in soil and brown rice and human health risk assessment near three mining areas in central China[J]. Journal of Healthcare Engineering, 2017, 2017. doi. org/10.1155/2017/4124302.
[92] Brahman K D, Kazi T G, Baig J A, et al. Fluoride and arsenic exposure through water and grain crops in Nagarparkar, Pakistan[J]. Chemosphere, 2014, 100: 182-189.
[93] Li Z, Ma Z, van der Kuijp T J, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. Science of The Total Environment, 2014, 468: 843-853.
[94] 李梦莹, 王成尘, 毕珏, 等. 食品中重金属的人体健康风险评估方法研究进展[J]. 福建农林大学学报(自然科学版), 2021, 50(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-FJND202101001.htm
Li M Y, Wang C C, Bi Y, et al. Human health risk assessment of heavy metals in food: A review[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2021, 50: 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-FJND202101001.htm
[95] Giovanni L, Francesca Z. Probabilistic health risk assessment of carcinogenic emissions from a MSW gasification plant[J]. Environment International, 2012, 44: 80-91. http://www.onacademic.com/detail/journal_1000035381205310_419d.html
[96] Li Y, Bi Y, Mi W, et al. Land-use change caused by anthropogenic activities increase fluoride and arsenic pollution in groundwater and human health risk[J]. Journal of Hazardous Materials, 2021, 406: 124337. http://www.ncbi.nlm.nih.gov/pubmed/33144018
[97] Ali S, Ali H, Pakdel M, et al. Spatial analysis and probabilistic risk assessment of exposure to fluoride in drinking water using GIS and Monte Carlo simulation[J]. Environmental Science and Pollution Research, 2021. doi: 10.1007/s11356-021-16075-8
[98] Yu Y, Cui S, Fan R, et al. Distribution and superposed health risk assessment of fluorine co-effect in phosphorous chemical industrial and agricultural sources[J]. Environmental Pollution, 2020, 262: 114249. http://www.sciencedirect.com/science/article/pii/S0269749119359883
[99] Cao H, Xie X, Wang Y, et al. Predicting geogenic ground-water fluoride contamination throughout China[J]. Journal of Environmental Sciences, 2022, 115: 140-148. http://www.sciencedirect.com/science/article/pii/S1001074221002710
[100] Yu Y Q, Yang J Y. Health risk assessment of fluorine in fertilizers from a fluorine contaminated region based on the oral bioaccessibility determined by Biomimetic Whole Digestion-Plasma in-vitro Method (BWDPM)[J]. Journal of Hazardous Materials, 2020, 383: 121-124. http://www.ncbi.nlm.nih.gov/pubmed/31505426
[101] Rizzu M, Tanda A, Canu L, et al. Fluoride uptake and translocation in food crops grown in fluoride-rich soils[J]. Journal of The Science of Food and Agriculture, 2020, 100(15): 5498-5509. http://onlinelibrary.wiley.com/doi/pdf/10.1002/jsfa.10601
[102] Rizzu M, Tanda A, Cappai C, et al. Impacts of soil and water fluoride contamination on the safety and productivity of food and feed crops: A systematic review[J]. Science of the Total Environment, 2021, 787: 147650. http://www.sciencedirect.com/science/article/pii/S0048969721027212
-