中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

能量色散X射线荧光光谱技术在土壤重金属分析中的应用研究现状

蒋奡松, 吴龙华, 李柱. 能量色散X射线荧光光谱技术在土壤重金属分析中的应用研究现状[J]. 岩矿测试, 2024, 43(4): 659-675. doi: 10.15898/j.ykcs.202312230186
引用本文: 蒋奡松, 吴龙华, 李柱. 能量色散X射线荧光光谱技术在土壤重金属分析中的应用研究现状[J]. 岩矿测试, 2024, 43(4): 659-675. doi: 10.15898/j.ykcs.202312230186
JIANG Aosong, WU Longhua, LI Zhu. Application of Energy Dispersive X-ray Fluorescence Spectroscopy in Analysis of Heavy Metals in Soil: A Review[J]. Rock and Mineral Analysis, 2024, 43(4): 659-675. doi: 10.15898/j.ykcs.202312230186
Citation: JIANG Aosong, WU Longhua, LI Zhu. Application of Energy Dispersive X-ray Fluorescence Spectroscopy in Analysis of Heavy Metals in Soil: A Review[J]. Rock and Mineral Analysis, 2024, 43(4): 659-675. doi: 10.15898/j.ykcs.202312230186

能量色散X射线荧光光谱技术在土壤重金属分析中的应用研究现状

  • 基金项目: 国家重点研发计划项目(2022YFC3700805)
详细信息
    作者简介: 蒋奡松,硕士研究生,专业方向为便携式XRF应用与校准研究。E-mail:18019592389@163.com
    通讯作者: 吴龙华,博士,研究员,长期从事重金属污染农田的植物修复工作。E-mail:lhwu@issas.ac.cn
  • 中图分类号: O657.34

Application of Energy Dispersive X-ray Fluorescence Spectroscopy in Analysis of Heavy Metals in Soil: A Review

More Information
  • 伴随着城市化和工业化的进程,重金属通过各种途径进入生态环境并在土壤中大量富集,对土壤环境健康造成潜在风险。近年来随着能量色散X射线荧光光谱技术(ED-XRF)的发展,仪器的检出限明显降低,并能适用于土壤中各类重金属的检测,正逐渐成为测定土壤环境中重金属浓度的有效设备。然而,土壤基质的复杂性和仪器自身的限制会导致利用ED-XRF在测定目标重金属时存在准确度和精密度较低等问题。譬如土壤样品的类型及粒径、仪器和环境中的噪声均会对检测造成一定影响,同时在定量分析模型方法的建立上也存在一定难度,仍不能很好地应用于实验室等数据质量要求较高的环境。本文总结了XRF在土壤重金属检测领域的应用与研究进展,探究了不同土壤样品状态及检测条件对ED-XRF仪器检测精确性的影响,梳理了ED-XRF光谱的主要预处理方法以及定量分析模型的建立过程,分析了ED-XRF在评估土壤重金属有效性上的应用潜力。当前,应用于ED-XRF检测的土壤样品制备程序已经相对成熟,在操作手段上如何减少土壤基体效应的影响,学者们的意见相对统一,即尽量使用干样、低粒径或压片土壤样品,而对检测数据的处理和分析还存在一定优化的空间。因此,目前主流的关注领域是结合不同算法的优点,进行ED-XRF光谱的预处理分析及建立定量分析模型来提高ED-XRF检测的精准度。但当下针对不同类型土壤的ED-XRF检测研究只点明了存在差异的现象,对其中的机理尚缺明晰的探究。未来需要继续探明不同基体效应存在于各类型土壤的原因及其影响大小,优化完善ED-XRF光谱定量分析模型,是ED-XRF定量分析研究的两个重要方向,通过多元回归分析对土壤中重金属有效性进行预测研究亦应是今后重点关注的领域。

  • 加载中
  • 表 1  光谱预处理方法对比

    Table 1.  Comparison of spectral preprocessing methods

    光谱
    预处理
    方法
    使用算法 特点与效果 参考文献
    噪声扣除 切比雪夫滤波器 切比雪夫滤波器使用和编程快速简单,使用谱窗宽度作为唯一的参数来控制噪声数据的平滑度,可作为LSP等方法的替代 López-Camacho等71
    最佳波束形成-傅里叶变换 将X射线光谱视为角度序列,对谱线进行相应的逆傅里叶变换得到自相关函数,并构建自相关矩阵,根据矩阵重新估计空间谱,重新估计得到的谱图较原始谱图更加平滑 Wu等72
    小波变换-S-G滤波器 该方法能有效地剔除含噪光谱信号中的噪声信息,同时提高了光谱的平滑度 杨帆等73
    小波变换阈值法 与傅里叶变换法和移动平均法进行对比,其标准曲线的效果更好,且提高了模型的稳定性与准确度 李芳74
    双树复小波变换 通过双树结构消除丢失的数据,计算阈值并使用阈值函数对噪声信号进行滤波处理,然后对滤波处理后的小波系数进行逆变换重构信号。较离散小波变换去噪信噪比更高,均方根误差更小 黄素真等75
    微分非线性消除平滑 能显著提高能量分辨率和噪声分辨性能,并与原始值相比测试误差减低近50% Lu等76
    背景扣除 傅里叶变换法 经本底扣除后,XRF野外测定含量与实验室分析结果的平均误差仅为−11.0%,相较线性本底扣除法降低14.9% 王卓等77
    复小波变换 复小波变换方法比实小波变换方法能更有效地进行背景推断,从而大大提高了谱图测量的有效性和精度 Hu等78
    双树复小波变换 该方法具有平滑、无振荡、能有效地保持信号不变等优点,仿真和实验结果均表明该方法能有效地去除XRF光谱中的本底 Zhao等79
    非线性迭代削峰法
    (SNIP)
    算法简单,且具有自适应于峰值区域宽度的裁剪窗口,较以往的算法能更准确地去除背景 Morháč80
    蒙特卡罗模拟
    (MCNP)
    根据检测几何结构和实际测量条件,建立蒙特卡罗仿真计算系统模拟计算得到能量沉积谱和模拟谱,通过消除能量沉积谱中特征峰得到连续背景谱,视为真实背景值,在实际检测中效果较好 Jia等81
    生成对抗网络模型
    (GNN)
    与原始光谱进行线性拟合对比显示,样品光谱信号的基线得到较好地校正 王欣然82
    下载: 导出CSV

    表 2  X射线荧光光谱建模方法比较

    Table 2.  Comparison of modeling methods for X-ray fluorescence spectroscopy

    目标元素 定量分析模型 模型应用效果 参考文献
    Pb、Zn、Cu、Cr PLS 用PLS建立模型可以较好地预测不同类型土壤中Pb、Zn、Cu、Cr含量 钱原铬52
    As、Pb DBN-RF 降低了光谱数据中的冗余,既保留DBN强大的特征提取能力,又提高了模型的预测能力, 较常用模型R2值至少提高0.0557 刘峥莹83
    Pb CARS-PLS 预测决定系数R2达到0.9955,具有较好的预测能力 江晓宇等84
    Cd、Hg PLSR 模型较为稳健,具有良好的预测能力 王清亚57
    Cr、Cu、Zn、As、Pb PSO、SVM 模型训练集和测试集的决定系数R2分别在0.99和0.90以上,预测准确度显著提高 程惠珠等85
    Cr、Cu、Zn、As、Pb SVM
    LM-BP-ANN
    MLR
    三种模型分析的决定系数R2均高于0.95,模型的拟合度高,准确度好,可以对土壤样品中5种重金属含量实现较好的预测 李芳74
    Pb PLS 与传统的一元线性回归和多元线性回归分析相比,PLS回归分析能明显提高模型预测的准确度 黄启厅等86
    Cr、Zn、As、Pb、Cd CNN 预测模型的决定系数R2达到0.9583,效果优于其他预测模型,预测效果良好 杨慧87
    稀土元素 PLSR、OLSR 偏最小二乘回归相比最小二乘回归的预测精度要好 Kirsanov等88
    下载: 导出CSV
  • [1]

    杨正标, 何青青, 王珂, 等. 便携式XRF在污染地块土壤金属元素调查中的应用[J]. 环境监控与预警, 2023, 15(1): 23−26, 51. doi: 10.3969/j.issn.1674-6732.2023.01.004

    Yang Z B, He Q Q, Wang K, et al. Application of portable XRF in investigation of metal elements in contaminated soil[J]. Environmental Monitoring and Early Warning, 2023, 15(1): 23−26, 51. doi: 10.3969/j.issn.1674-6732.2023.01.004

    [2]

    姚真真, 李玲, 张志扬, 等. 我国土壤元素分析方法标准体系现状研究[J]. 农产品质量与安全, 2019(5): 69−74. doi: 10.3969/j.issn.1674-8255.2019.05.014

    Yao Z Z, Li L, Zhang Z Y, et al. Research on the status quo of standard system of soil element analysis methods in China[J]. Quality and Safety of Agricultural Products, 2019(5): 69−74. doi: 10.3969/j.issn.1674-8255.2019.05.014

    [3]

    李冰, 周剑雄, 詹秀春. 无机多元素现代仪器分析技术[J]. 地质学报, 2011, 85(11): 1878−1916. doi: 11-1951/P.20111025.0834.003

    Li B, Zhou J X, Zhan X C. Modern instrumental analysis techniques for inorganic multi-element[J]. Acta Geologica Sinica, 2011, 85(11): 1878−1916. doi: 11-1951/P.20111025.0834.003

    [4]

    王晨希. XRF、ICP-OES及FAAS测定土壤样品中重金属元素对比研究[J]. 绿色科技, 2021, 23(6): 23−24. doi: 10.3969/j.issn.1674-9944.2021.06.007

    Wang C X. Comparative study on the determination of heavy metal elements in soil samples by XRF, ICP-OES and FAAS[J]. Green Science and Technology, 2021, 23(6): 23−24. doi: 10.3969/j.issn.1674-9944.2021.06.007

    [5]

    Brown G, Kanaris-Sotiriou R. The determination of sulphur in soils X-ray fluorescence analysis[J]. Annales Agronomiques, 1967, 18(6): 653. doi: 10.1039/an9699400782

    [6]

    Brumme M, Heckel J, Irmer K. Influence of polarization of exciting X-radiation on sensitivity of energy dispersive X-ray fluorescence trace analysis at rocks and soils[J]. Isotopenpraxis Isotopes in Environmental and Health Studies, 1990, 26(7): 341−342. doi: 10.1080/10256019008624324

    [7]

    Kubala-Kukuś A, Banaś D, Braziewicz J, et al. X-ray spectrometry and X-ray microtomography techniques for soil and geological samples analysis[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2015, 364: 85−92. doi: 10.1016/j.nimb.2015.07.136

    [8]

    Chuparina E V, Gunicheva T N. Nondestructive X-ray fluorescence determination of some elements in plant materials[J]. Journal of Analytical Chemistry, 2003, 58(9): 856−861. doi: 10.1023/A:1025689202055

    [9]

    吉昂. X射线荧光光谱三十年[J]. 岩矿测试, 2012, 31(3): 383−398. doi: 10.3969/j.issn.0254-5357.2012.03.002

    Ji A. Thirty years of X-ray fluorescence spectroscopy[J]. Rock and Mineral Analysis, 2012, 31(3): 383−398. doi: 10.3969/j.issn.0254-5357.2012.03.002

    [10]

    赖裕瑈. 基于SDD探测器X荧光仪的应用探讨[D]. 南昌: 东华理工大学, 2015.

    Lai Y R. Application of X-ray fluorescence instrument based on SDD detector[D]. Nanchang: East China University of Technology, 2015.

    [11]

    程大伟, 刘明博, 沈学静, 等. 双曲面弯晶X射线分析仪器及应用进展[J]. 冶金分析, 2022, 42(1): 10−17. doi: 10.13228/j.boyuan.issn1000-7571.011498

    Cheng D W, Liu M B, Shen X J. Hyperboloid bent crystal X-ray analysis instrument and application progress[J]. Metallurgical Analysis, 2022, 42(1): 10−17. doi: 10.13228/j.boyuan.issn1000-7571.011498

    [12]

    张勤, 樊守忠, 潘宴山, 等. X射线荧光光谱法测定化探样品中主、次和痕量组分[J]. 理化检验(化学分册), 2005, 41(8): 547−552. doi: 10.3321/j.issn:1001-4020.2005.08.003

    Zhang Q, Fan S Z, Pan Y S. Determination of primary, secondary and trace components in geochemical samples by X-ray fluorescence spectroscopy[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2005, 41(8): 547−552. doi: 10.3321/j.issn:1001-4020.2005.08.003

    [13]

    何姣姣, 江荣风, 王雁峰, 等. X射线荧光光谱法在测定土壤及植物、矿质养分方面的应用[J]. 中国土壤与肥料, 2020(1): 1−7. doi: 10.11838/sfsc.1673-6257.19047

    He J J, Jiang R F, Wang Y F. Application of X-ray fluorescence spectroscopy in the determination of mineral nutrients in soil and plants[J]. China Soil and Fertilizer, 2020(1): 1−7. doi: 10.11838/sfsc.1673-6257.19047

    [14]

    张杰. 土壤重金属XRF光谱重叠峰解析及含量反演模型研究[D]. 秦皇岛: 燕山大学, 2021.

    Zhang J. Study on analysis of overlapping peaks of soil heavy metal XRF spectra and content inversion model[D]. Qinhuangdao: Yanshan University, 2021.

    [15]

    林照彬. 便携式XRF土壤重金属分析仪快速检测与国标方法比对研究[J]. 皮革制作与环保科技, 2021, 2(10): 34−35, 37.

    Lin Z B. Comparison of portable XRF soil heavy metal analyzer with national standard method[J]. Leather Making and Environmental Technology, 2021, 2(10): 34−35, 37.

    [16]

    dos Anjos M, Lopes R, de Jesus E, et al. Quantitative analysis of metals in soil using X-ray fluorescence[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 2000, 55(7): 1189−1194. doi: 10.1016/S0584-8547(0)00165-8

    [17]

    Jang M. Application of portable X-ray fluorescence (pXRF) for heavy metal analysis of soils in crop fields near abandoned mine sites[J]. Environmental Geochemistry and Health, 2010, 32(3): 207−216. doi: 10.1007/s10653-009-9276-z

    [18]

    Wan M, Hu W, Qu M, et al. Application of arc emission spectrometry and portable X-ray fluorescence spectrometry to rapid risk assessment of heavy metals in agricultural soils[J]. Ecological Indicators, 2019, 101: 583−594. doi: 10.1016/j.ecolind.2019.01.069

    [19]

    韩平, 王纪华, 陆安祥, 等. 便携式X射线荧光光谱分析仪测定土壤中重金属[J]. 光谱学与光谱分析, 2012, 32(3): 826−829. doi: 10.3964/j.issn.1000-0593(2012)03-0826-04

    Han P, Wang J H, Lu A X, et al. Determination of heavy metals in soil by portable X-ray fluorescence spectrometer[J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 826−829. doi: 10.3964/j.issn.1000-0593(2012)03-0826-04

    [20]

    Radu T, Gallagher S, Byrne B, et al. Portable X-ray fluorescence as a rapid technique for surveying elemental distributions in soil[J]. Spectroscopy Letters, 2013, 46(7): 516−526. doi: 10.1080/00387010.2013.763829

    [21]

    Paulette L, Man T, Weindorf D C, et al. Rapid assessment of soil and contaminant variability via portable X-ray fluorescence spectroscopy: Copşa Mică, Romania[J]. Geoderma, 2015, 243–244: 130–140.

    [22]

    Peinado F M, Ruano S M, González M G B, et al. A rapid field procedure for screening trace elements in polluted soil using portable X-ray fluorescence (PXRF)[J]. Geoderma, 2010, 159(1–2): 76−82. doi: 10.1016/j.geoderma.2010.06.019

    [23]

    焦思. 基于PXRF的土壤重金属污染空间异质性分析[D]. 南京: 南京林业大学, 2021.

    Jiao S. Spatial heterogeneity analysis of soil heavy metal pollution based on PXRF[D]. Nanjing: Nanjing Forestry University, 2021.

    [24]

    Qu M, Chen J, Huang B. Resampling with in situ field portable X-ray fluorescence spectrometry (FPXRF) to reduce the uncertainty in delineating the remediation area of soil heavy metals[J]. Environmental Pollution, 2021, 271: 116310. doi: 10.1016/j.envpol.2020.116310

    [25]

    彭洪柳. 粤北某铅锌冶炼厂周边农田镉铅污染风险与修复技术初探[D]. 芜湖: 安徽师范大学, 2019.

    Peng H L. A preliminary study on cadmium and lead pollution risk and remediation technology in farmland around a lead-zinc smelter in Northern Guangdong[D]. Wuhu: Anhui Normal University, 2019.

    [26]

    孟蕾, 韩平, 王世芳, 等. X射线荧光光谱在土壤重金属检测中的应用进展[J]. 食品与机械, 2017, 33(8): 210−213. doi: 10.13652/j.issn.1003-5788.2017.08.045

    Meng L, Han P, Wang S F, et al. Application progress of X-ray fluorescence spectroscopy in the detection of heavy metals in soil[J]. Food & Machinery, 2017, 33(8): 210−213. doi: 10.13652/j.issn.1003-5788.2017.08.045

    [27]

    武天云, Schoenau J J, 李凤民, 等. 土壤有机质概念和分组技术研究进展[J]. 应用生态学报, 2004, 15(4): 717−722. doi: 10.3321/j.issn:1001-9332.2004.04.036

    Wu T Y, Schoenau J J, Li F M, et al. Research progress on soil organic matter concept and grouping technology[J]. Chinese Journal of Applied Ecology, 2004, 15(4): 717−722. doi: 10.3321/j.issn:1001-9332.2004.04.036

    [28]

    Marguí E, Queralt I, Hidalgo M. Application of X-ray fluorescence spectrometry to determination and quantitation of metals in vegetal material[J]. TrAC Trends in Analytical Chemistry, 2009, 28(3): 362−372. doi: 10.1016/j.trac.2008.11.011

    [29]

    Shand C A, Wendler R. Portable X-ray fluorescence analysis of mineral and organic soils and the influence of organic matter[J]. Journal of Geochemical Exploration, 2014, 143: 31−42. doi: 10.1016/j.gexplo.2014.03.005

    [30]

    彭洪柳, 杨周生, 赵婕, 等. 高精度便携式X射线荧光光谱仪在污染农田土壤重金属速测中的应用研究[J]. 农业环境科学学报, 2018, 37(7): 1386−1395. doi: 10.11654/jaes.2018-0568

    Peng H L, Yang Z S, Zhao J, et al. Application of high-precision portable X-ray fluorescence spectrometer in the rapid detection of heavy metals in polluted farmland soil[J]. Journal of Agro-Environment Science, 2018, 37(7): 1386−1395. doi: 10.11654/jaes.2018-0568

    [31]

    陈曾思澈, 徐亚, 雷国元, 等. PXRF土壤重金属检测的影响因素、模式与校正方法[J]. 中国环境科学, 2020, 40(2): 708−715. doi: 10.3969/j.issn.1000-6923.2020.02.030

    Chenzeng S C, Xu Y, Lei G Y, et al. Influencing factors, modes and correction methods for soil heavy metal detection by PXRF[J]. China Environmental Science, 2020, 40(2): 708−715. doi: 10.3969/j.issn.1000-6923.2020.02.030

    [32]

    Costa Y T, Ribeiro B T, Curi N, et al. Organic matter removal on oxide determination in Oxisols via portable X-ray fluorescence[J]. Communications in Soil Science and Plant Analysis, 2019, 50(6): 673−681. doi: 10.1080/00103624.2019.1589479

    [33]

    Ravansari R, Lemke L D. Portable X-ray fluorescence trace metal measurement in organic rich soils: pXRF response as a function of organic matter fraction[J]. Geoderma, 2018, 319: 175−184. doi: 10.1016/j.geoderma.2018.01.011

    [34]

    Sut‐Lohmann M, Ramezany S, Kästner F. Feasibility of pXRF to evaluate chosen heavy metals in soil highly influenced by municipal waste disposal—A monitoring study of a former sewage farm[J]. Land Degradation & Development, 2022, 33(3): 439−451. doi: 10.1002/ldr.4147

    [35]

    傅赵聪, 王翀, 吴春发, 等. HDXRF法农田土壤镉测定结果准确度评价与精准校正模型构建[J]. 土壤, 2023, 55(4): 829−837. doi: 10.13758/j.cnki.tr.2023.04.017

    Fu Z C, Wang C, Wu C F, et al. Accuracy evaluation and accurate correction model construction of cadmium determination results in farmland soil by HDXRF method[J]. Soils, 2023, 55(4): 829−837. doi: 10.13758/j.cnki.tr.2023.04.017

    [36]

    曹发明. XRF分析技术在土壤重金属检测中的应用研究[D]. 成都: 成都理工大学, 2014.

    Cao F M. Application of XRF analysis in soil heavy metal detection[D]. Chengdu: Chengdu University of Technology, 2014.

    [37]

    倪子月, 陈吉文, 刘明博, 等. 能量色散X射线荧光光谱法测定土壤中铬和锰的干扰校正[J]. 冶金分析, 2016, 36(10): 10−14. doi: 10.13228/j.boyuan.issn1000-7571.009844

    Ni Z Y, Chen J W, Liu M B, et al. Interference correction for determination of chromium and manganese in soil by energy dispersive X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2016, 36(10): 10−14. doi: 10.13228/j.boyuan.issn1000-7571.009844

    [38]

    周云泷. X射线荧光法分析土壤中重金属含量[D]. 成都: 成都理工大学, 2015.

    Zhou Y L. Analysis of heavy metals in soil by X-ray fluorescence[D]. Chengdu: Chengdu University of Technology, 2015.

    [39]

    Ulmanu M, Anger I, Gamen E, et al. Rapid and low-cost determination of some heavy metals in soil using an X-ray fluorescence portable instrument[J]. Research Journal of Agricultural Science, 2011, 43(3): 235−241.

    [40]

    Lu J, Guo J, Wei Q, et al. A matrix effect correction method for portable X-ray fluorescence data[J]. Applied Sciences, 2022, 12(2): 568. doi: 10.3390/app12020568

    [41]

    章明奎. 亚热带山地垂直带土壤发生的讨论[J]. 中国农学通报, 2020, 36(23): 66−73.

    Zhang M K. Discussion on soil occurrence in the vertical zone of subtropical mountains[J]. Chinese Agricultural Science Bulletin, 2020, 36(23): 66−73.

    [42]

    唐晓勇, 倪晓芳, 商照聪, 等. 土壤中铁对砷的便携式X射线荧光光谱仪分析基体效应研究与校正[J]. 冶金分析, 2021, 41(1): 69−74. doi: 10.13228/j.boyuan.issn1000-7571.011109

    Tang X Y, Ni X F, Shang Z C, et al. Study and correction of matrix effect of iron on arsenic in soil by portable X-ray fluorescence spectrometer[J]. Metallurgical Analysis, 2021, 41(1): 69−74. doi: 10.13228/j.boyuan.issn1000-7571.011109

    [43]

    唐晓勇, 倪晓芳, 商照聪. 土壤中铁元素对铬元素p-XRF测定准确度的影响与校正[J]. 岩矿测试, 2020, 39(3): 467−474. doi: 10.15898/j.cnki.11-2131/td.201911200161

    Tang X Y, Ni X F, Shang Z C. Effect and correction of iron in soil on the accuracy of p-XRF determination of chromium[J]. Rock and Mineral Analysis, 2020, 39(3): 467−474. doi: 10.15898/j.cnki.11-2131/td.201911200161

    [44]

    杨桂兰, 倪晓芳, 张长波. 基于便携式X射线荧光光谱法的土壤重金属快速检测[J]. 浙江农业学报, 2019, 31(11): 1903−1908. doi: 10.3969/j.issn.1004-1524.2019.21.17

    Yang G L, Ni X F, Zhang C B. Rapid detection of heavy metals in soil based on portable X-ray fluorescence spectrometry[J]. Journal of Zhejiang Agricultural Sciences, 2019, 31(11): 1903−1908. doi: 10.3969/j.issn.1004-1524.2019.21.17

    [45]

    陆安祥, 王纪华, 潘立刚, 等. 便携式X射线荧光光谱测定土壤中Cr, Cu, Zn, Pb和As的研究[J]. 光谱学与光谱分析, 2010, 30(10): 2848−2852. doi: 10.3964/j.issn.1000-0593(2010)10-2848-05

    Lu A X, Wang J H, Pan L G, et al. Determination of Cr, Cu, Zn, Pb and As in soil by portable X-ray fluorescence spectroscopy[J]. Spectroscopy and Spectral Analysis, 2010, 30(10): 2848−2852. doi: 10.3964/j.issn.1000-0593(2010)10-2848-05

    [46]

    徐少强, 杨菲, 刘爽, 等. 便携式XRF对西南喀斯特地区碳酸盐岩风化壳土壤分析适用性评估[J]. 地球与环境, 2023, 31(2): 1−10. doi: 10.14050/j.cnki.1672-9250.2023.51.013

    Xu S Q, Yang F, Liu S, et al. Applicability of portable XRF for carbonate weathered crust soil analysis in southwest karst region[J]. Earth and Environment, 2023, 31(2): 1−10. doi: 10.14050/j.cnki.1672-9250.2023.51.013

    [47]

    唐嫚, 曾沛艺, 杨牧青, 等. X射线荧光光谱仪在茶园土壤总砷含量检测中的应用研究——以昌宁县为例[J]. 现代农业科技, 2022(20): 127−132, 144. doi: 10.3969/j.issn.1007-5739.2022.20.033

    Tang M, Zeng P Y, Yang M Q, et al. Application of X-ray fluorescence spectrometer in the detection of total arsenic content in tea plantation soil: A case study of Changning County[J]. Modern Agricultural Science and Technology, 2022(20): 127−132, 144. doi: 10.3969/j.issn.1007-5739.2022.20.033

    [48]

    李燕, 魏雨露, 夏龙飞. 便携式X荧光光谱仪在场地重金属污染调查中的应用研究[C]// 《环境工程》2019年全国学术年会论文集(下册). 北京: 《环境工程》编委会, 2019: 6.

    Li Y, Wei Y L, Xia L F. Application of portable X-ray fluorescence spectrometer in the investigation of heavy metal pollution in the site[C]//Proceedings of the 2019 National Academic Annual Conference of Environmental Engineering (Volume Ⅱ). Beijing: Editorial Board of 《Environmental Engineering》, 2019: 6.

    [49]

    刘尚华, 陶光仪, 吉昂. X射线荧光光谱分析中的粉末压片制样法[J]. 光谱实验室, 1998, 15(6): 10−16. doi: 10.3969/j.issn.1004-8138.1998.06.003

    Liu S H, Tao G Y, Ji A. Powder tablet preparation method in X-ray fluorescence spectroscopy[J]. Spectroscopy Laboratory, 1998, 15(6): 10−16. doi: 10.3969/j.issn.1004-8138.1998.06.003

    [50]

    金楚湄, 闫颖, 袁昕玥, 等. 影响XRF法测定土壤重金属Pb、Cd含量准确性的因素优化[J]. 山东化工, 2023, 52(19): 134−138, 142. doi: 10.3969/j.issn.1008-021X.2023.19.036

    Jin C M, Yan Y, Yuan X Y, et al. Optimization of factors affecting the accuracy of XRF determination of soil heavy metal Pb and Cd content[J]. Shandong Chemical Industry, 2023, 52(19): 134−138, 142. doi: 10.3969/j.issn.1008-021X.2023.19.036

    [51]

    Peralta E, Pérez G, Ojeda G, et al. Heavy metal availability assessment using portable X-ray fluorescence and single extraction procedures on former vineyard polluted soils[J]. Science of the Total Environment, 2020, 726: 138670. doi: 10.1016/j.scitotenv.2020.138670

    [52]

    钱原铬. X射线荧光光谱定量分析土壤中重金属方法研究[D]. 长春: 吉林大学, 2012.

    Qian Y G. Quantitative analysis of heavy metals in soil by X-ray fluorescence spectroscopy[D]. Changchun: Jilin University, 2012.

    [53]

    de Freitas M G, dos Santos F R, Parreira P S, et al. Influence of soil sample grain size on energy dispersive X-ray fluorescence analysis: A comparative study case with three spectrometers[J]. Spectroscopy Letters, 2021, 54(7): 560−570. doi: 10.1080/00387010.2021.1957941

    [54]

    Ge L, Lai W, Lin Y. Influence of and correction for moisture in rocks, soils and sediments on in situ XRF analysis[J]. X-Ray Spectrometry, 2005, 34(1): 28−34. doi: 10.1002/xrs.782

    [55]

    朱梦杰. 便携式XRF测定仪在土壤检测中的应用及其影响因素[J]. 中国环境监测, 2019, 35(6): 129−137. doi: 10.19316/j.issn.1002-6002.2019.06.18

    Zhu M J. Application of portable XRF analyzer in soil detection and its influencing factors[J]. China Environmental Monitoring, 2019, 35(6): 129−137. doi: 10.19316/j.issn.1002-6002.2019.06.18

    [56]

    冉景, 王德建, 王灿, 等. 便携式X射线荧光光谱法与原子吸收/原子荧光法测定土壤重金属的对比研究[J]. 光谱学与光谱分析, 2014, 34(11): 3113−3118. doi: 10.3964/j.issn.1000-0593(2014)11-3113-06

    Ran J, Wang D J, Wang C. Comparative study on the determination of heavy metals in soil by portable X-ray fluorescence spectrometry and atomic absorption/atomic fluorescence method[J]. Spectroscopy and Spectral Analysis, 2014, 34(11): 3113−3118. doi: 10.3964/j.issn.1000-0593(2014)11-3113-06

    [57]

    王清亚. 基于XRF的土壤重金属定量分析方法研究及应用[D]. 南昌: 东华理工大学, 2021.

    Wang Q Y. Research and application of quantitative analysis method of soil heavy metals based on XRF[D]. Nanchang: East China University of Technology, 2021.

    [58]

    Weindorf D C, Bakr N, Zhu Y, et al. Influence of ice on soil elemental characterization via portable X-ray fluorescence spectrometry[J]. Pedosphere, 2014, 24(1): 1−12. doi: 10.1016/S1002-0160(13)60076-4

    [59]

    赵合琴, 郑先君, 魏丽芳, 等. X射线荧光光谱分析中样品制备方法评述[J]. 河南化工, 2006(10): 8−11. doi: 10.3969/j.issn.1003-3467.2006.10.003

    Zhao H Q, Zheng X J, Wei L F, et al. Review of sample preparation methods in X-ray fluorescence spectroscopy[J]. Henan Chemical Industry, 2006(10): 8−11. doi: 10.3969/j.issn.1003-3467.2006.10.003

    [60]

    李亚, 王英凯, 张旭, 等. X射线荧光光谱法测定高含量有机碳样品中的钾、钠、钙、镁、硅、铝、铁、钛、锰、磷[J]. 中国无机分析化学, 2021, 11(2): 57−61. doi: 10.3969/j.issn.2095-1035.2021.02.012

    Li Y, Wang Y K, Zhang X, et al. Determination of potassium, sodium, calcium, magnesium, silicon, aluminum, iron, titanium, manganese and phosphorus in high organic carbon samples by X-ray fluorescence spectroscopy[J]. China Journal of Inorganic Analytical Chemistry, 2021, 11(2): 57−61. doi: 10.3969/j.issn.2095-1035.2021.02.012

    [61]

    胡明情. XRF法检测土壤重金属的影响因素[J]. 环境监控与预警, 2016, 8(2): 23−24, 27. doi: 10.3969/j.issn.1674-6732.2016.02.006

    Hu M Q. Influencing factors of XRF detection of heavy metals in soil[J]. Environmental Monitoring and Early Warning, 2016, 8(2): 23−24, 27. doi: 10.3969/j.issn.1674-6732.2016.02.006

    [62]

    Hu W, Huang B, Weindorf D C, et al. Metals analysis of agricultural soils via portable X-ray fluorescence spectrometry[J]. Bulletin of Environmental Contamination and Toxicology, 2014, 92(4): 420−426. doi: 10.1007/s00128-014-1236-3

    [63]

    Angeles-Chavez C, Antonio J, Antonia M. Chemical quantification of Mo-S, W-Si and Ti-V by energy dispersive X-ray spectroscopy[M]//Sharma S K. X-Ray Spectroscopy, 2012.

    [64]

    Newlander K, Goodale N, Jones G T, et al. Empirical study of the effect of count time on the precision and accuracy of pXRF data[J]. Journal of Archaeological Science, 2015, 3: 534−548. doi: 10.1016/j.jasrep.2015.07.007

    [65]

    王晔, 冷传旭, 潘增志, 等. 提高便携式XRF测定仪在土壤污染调查中使用效果的措施[J]. 化工管理, 2022(34): 71−73. doi: 10.19900/j.cnki.ISSN1008-4800.2022.34.022

    Wang Y, Leng C X, Pan Z Z, et al. Measures to improve the use of portable XRF analyzers in soil pollution investigation[J]. Chemical Industry Management, 2022(34): 71−73. doi: 10.19900/j.cnki.ISSN1008-4800.2022.34.022

    [66]

    吴晓玲. XRF分析土壤重金属元素含量的方法研究[D]. 成都: 成都理工大学, 2016.

    Wu X L. XRF method for analysis of heavy metal content in soil[D]. Chengdu: Chengdu University of Technology, 2016.

    [67]

    黄秋鑫, 孙秀敏. 粉末标准曲线XRF法检测土壤中的重/类金属[J]. 环境科学与技术, 2014, 37(9): 92−98. doi: 10.3969/j.issn.1003-6504.2014.09.018

    Huang Q X, Sun X M. Detection of heavy/metalloids in soil by standard curve XRF of powder[J]. Environmental Science and Technology, 2014, 37(9): 92−98. doi: 10.3969/j.issn.1003-6504.2014.09.018

    [68]

    王世芳, 韩平, 王纪华, 等. X射线荧光光谱分析法在土壤重金属检测中的应用研究进展[J]. 食品安全质量检测学报, 2016, 7(11): 4394−4400. doi: 10.19812/j.cnki.jfsq11-5956/ts.2016.11.028

    Wang S F, Han P, Wang J H, et al. Research progress on the application of X-ray fluorescence spectroscopy in the detection of heavy metals in soil[J]. Journal of Food Safety and Quality, 2016, 7(11): 4394−4400. doi: 10.19812/j.cnki.jfsq11-5956/ts.2016.11.028

    [69]

    章炜, 张玉钧, 陈东. 土壤重金属镍元素的X射线荧光定量分析[J]. 激光与光电子学进展, 2012, 49(1): 137−140. doi: 10.3788/LOP49.013002

    Zhang Y, Zhang Y J, Chen D. X-ray fluorescence quantitative analysis of heavy metal nickel in soil[J]. Advances in Laser and Optoelectronics, 2012, 49(1): 137−140. doi: 10.3788/LOP49.013002

    [70]

    Li F, Ge L, Tang Z, et al. Recent developments on XRF spectra evaluation[J]. Applied Spectroscopy Reviews, 2020, 55(4): 263−287. doi: 10.1080/05704928.2019.1580715

    [71]

    López-Camacho E, García-Cortés A, Palacio C. A family of smoothing algorithms for electron and other spectroscopies based on the Chebyshev filter[J]. Thin Solid Films, 2006, 513(1−2): 72−77. doi: 10.1016/j.tsf.2006.01.024

    [72]

    Wu X, Liu Z. A smoothing method for X-ray spectrum based on best beamforming[J]. Radiation Physics and Chemistry, 2012, 81(3): 248−252. doi: 10.1016/j.radphyschem.2011.11.048

    [73]

    杨帆, 王鹏, 张宁超, 等. 一种基于小波变换的改进滤波算法及其在光谱去噪方面的应用[J]. 国外电子测量技术, 2020, 39(8): 98−104. doi: 10.19652/j.cnki.femt.2002126

    Yang F, Wang P, Zhang N C, et al. An improved filtering algorithm based on wavelet transform and its application in spectral denoising[J]. Foreign Electronic Measurement Technology, 2020, 39(8): 98−104. doi: 10.19652/j.cnki.femt.2002126

    [74]

    李芳. 基于小波变换的能量色散X射线荧光光谱建模方法研究[D]. 长春: 吉林大学, 2015.

    Li F. Research on modeling method of energy-dispersive X-ray fluorescence spectroscopy based on wavelet transform[D]. Changchun: Jilin University, 2015.

    [75]

    黄素真, 宋晓梅, 任正伟. 基于双树复小波变换信号去噪算法研究[J]. 国外电子测量技术, 2017, 36(10): 19−22. doi: 10.3969/j.issn.1002-8978.2017.10.006

    Huang S Z, Song X M, Ren Z W. Research on denoising algorithm for signal based on double-tree complex wavelet transform[J]. Foreign Electronic Measurement Technology, 2017, 36(10): 19−22. doi: 10.3969/j.issn.1002-8978.2017.10.006

    [76]

    Lu B, Chen Y, Zhu Y, et al. An energy spectrum smoothing algorithm based on TCC-DEE[J]. Nuclear Science and Techniques, 2017, 28(10): 140. doi: 10.1007/s41365-017-0290-z

    [77]

    王卓, 葛良全, 张庆贤, 等. 基于傅里叶变换的本底扣除法在X荧光分析中的应用[J]. 核技术, 2012, 35(7): 549−551.

    Wang Z, Ge L Q, Zhang Q X, et al. Application of background subtraction method based on Fourier transform in X-ray fluorescence analysis[J]. Nuclear Techniques, 2012, 35(7): 549−551.

    [78]

    Hu Y, Zhou J, Tang J, et al. The application of complex wavelet transform to spectral signals background deduction[J]. Chromatographia, 2013, 76(11−12): 687−696. doi: 10.1007/s10337-013-2456-0

    [79]

    Zhao F, Wang A. A background subtraction approach based on complex wavelet transforms in EDXRF: Background subtraction approach based on complex wavelet[J]. X-Ray Spectrometry, 2015, 44(2): 41−47. doi: 10.1002/xrs.2576

    [80]

    Morháč M. An algorithm for determination of peak regions and baseline elimination in spectroscopic data[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 600(2): 478−487. doi: 10.1016/j.nima.2008.11.132

    [81]

    Jia L, Gu Y, Zhang Q, et al. The accuracy evaluation method of baseline estimation algorithms in energy dispersive X-ray fluorescence spectrum analysis[J]. X-Ray Spectrometry, 2023, 52(1): 22−27. doi: 10.1002/xrs.3180

    [82]

    王欣然. 基于XRF的土壤重金属元素检测分析方法研究[D]. 成都: 电子科技大学, 2023.

    Wang X R. Research on XRF-based analysis method for the detection of heavy metal elements in soil[D]. Chengdu: University of Electronic Science and Technology of China, 2023.

    [83]

    刘峥莹. 土壤重金属XRF光谱重叠峰解析及含量预测模型研究[D]. 秦皇岛: 燕山大学, 2022.

    Liu Z Y. Analysis of overlapping peaks of soil heavy metal XRF spectra and content prediction model[D]. Qinhuangdao: Yanshan University, 2022.

    [84]

    江晓宇, 李福生, 王清亚, 等. 便携式XRF分析仪检测土壤重金属应用研究[J]. 核电子学与探测技术, 2021, 41(6): 1005−1012. doi: 10.3969/j.issn.0258-0934.2021.06.015

    Jiang X Y, Li F S, Wang Q Y, et al. Research on the application of portable XRF analyzer for the detection of heavy metals in soil[J]. Nuclear Electronics and Detection Technology, 2021, 41(6): 1005−1012. doi: 10.3969/j.issn.0258-0934.2021.06.015

    [85]

    程惠珠, 杨婉琪, 李福生, 等. 面向XRF的竞争性自适应重加权算法和粒子群优化的支持向量机定量分析研究[J]. 光谱学与光谱分析, 2023, 43(12): 3742−3746. doi: 10.3964/j.issn.1000-0593(2023)12-3742-05

    Cheng H Z, Yang W Q, Li F S. Quantitative analysis of competitive adaptive reweighting algorithm and support vector machine for particle swarm optimization for XRF[J]. Spectroscopy and Spectral Analysis, 2023, 43(12): 3742−3746. doi: 10.3964/j.issn.1000-0593(2023)12-3742-05

    [86]

    黄启厅, 周炼清, 史舟, 等. FPXRF——偏最小二乘法定量分析土壤中的铅含量[J]. 光谱学与光谱分析, 2009, 29(5): 1434−1438. doi: 10.3964/j.issn.1000-0593(2009)05-1434-05

    Huang Q T, Zhou L Q, Shi Z, et al. FPXRF: Partial least squares method for quantitative analysis of lead content in soil[J]. Spectroscopy and Spectral Analysis, 2009, 29(5): 1434−1438. doi: 10.3964/j.issn.1000-0593(2009)05-1434-05

    [87]

    杨惠. 基于XRF的土壤重金属CNN-ELM混合预测模型研究[D]. 秦皇岛: 燕山大学, 2021.

    Yang H. Research on CNN-ELM hybrid prediction model of soil heavy metals based on XRF[D]. Qinhuangdao: Yanshan University, 2021.

    [88]

    Kirsanov D, Panchuk V, Goydenko A, et al. Improving precision of X-ray fluorescence analysis of lanthanide mixtures using partial least squares regression[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 113: 126−131. doi: 10.1016/j.sab.2015.09.013

    [89]

    Cheng S. Heavy metal pollution in China: Origin, pattern and control[J]. Environmental Science and Pollution Research, 2003, 10(3): 192−198. doi: 10.1065/espr2002.11.141.1

    [90]

    Melquiades F L, dos Santos F R. Preliminary Results: Energy dispersive X-ray fluorescence and partial least squares regression for organic matter determination in soil[J]. Spectroscopy Letters, 2015, 48(4): 286−289. doi: 10.1080/00387010.2013.874532

    [91]

    Morona F, dos Santos F R, Brinatti A M, et al. Quick analysis of organic matter in soil by energy-dispersive X-ray fluorescence and multivariate analysis[J]. Applied Radiation and Isotopes, 2017, 130: 13−20. doi: 10.1016/j.apradiso.2017.09.008

    [92]

    John K, Kebonye N M, Agyeman P C, et al. Comparison of cubist models for soil organic carbon prediction via portable XRF measured data[J]. Environmental Monitoring and Assessment, 2021, 193(4): 1−15. doi: 10.1007/s10661-021-08946-x

    [93]

    Zhu Y, Weindorf D C, Zhang W. Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture[J]. Geoderma, 2011.

    [94]

    Silva S H G, Weindorf D C, Pinto L C, et al. Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach[J]. Geoderma, 2020, 362: 114136. doi: 10.1016/j.geoderma.2019.114136

    [95]

    Weindorf S. Characterizing soils via portable X-ray fluorescence spectrometer: 3. Soil reaction (pH)[J]. Geoderma, 2014, 232-234: 141−147. doi: 10.1016/j.geoderma.2014.05.005

    [96]

    Teixeira A F D S, Pelegrino M H P, Faria W M. Tropical soil pH and sorption complex prediction via portable X-ray fluorescence spectrometry[J]. Geoderma, 2020, 361: 114132. doi: 10.1016/j.geoderma.2019.114132

    [97]

    Pelegrino M H P, Silva S H G, de Faria Á J G, et al. Prediction of soil nutrient content via pXRF spectrometry and its spatial variation in a highly variable tropical area[J]. Precision Agriculture, 2022, 23(1): 18−34. doi: 10.1007/s11119-021-09825-8

    [98]

    Andrade R, Silva S H G, Weindorf D C, et al. Micronutrients prediction via pXRF spectrometry in Brazil: Influence of weathering degree[J]. Geoderma Regional, 2021, 27: e00431. doi: 10.1016/j.geodrs.2021.e00431

  • 加载中

(2)

计量
  • 文章访问数:  710
  • PDF下载数:  131
  • 施引文献:  0
出版历程
收稿日期:  2023-12-23
修回日期:  2024-05-10
录用日期:  2024-06-06
刊出日期:  2024-07-31

目录