-
摘要:
氧同位素分析能够为岩石、热液及矿床形成演化提供重要的成因信息,是岩石学与矿床学研究的强有力工具。二次离子质谱仪(SIMS)以其独特的微区原位优势,广泛应用于锆石等矿物氧同位素分析,往代型号SHRIMP存在三维机械样品台在移动过程中发热甚至放气破坏样品腔真空的风险。为了维持样品腔稳定的高真空,保证氧同位素测试精度,本次研究首次利用升级压电陶瓷驱动高真空样品台的第五代高灵敏度、高分辨率二次离子质谱仪(SHRIMP Ⅴ),建立了氧同位素微区原位分析测试方法。在一次离子强度为3nA,电子枪能量为−1.9keV,束斑大小为25μm,入射狭缝宽度为120μm,18O−和16O−两个接收器狭缝宽度均为300μm的条件下,用锆石标样Temora 2和Qinghu对系统进行调试,获得16O信号强度约为1.2×109cps,并对标样R33、FC1和Tanz进行了测试。结果表明,标样氧同位素δ18O分析结果与其参考值在误差范围内一致,δ18O单点内在分析精度优于0.30‰(2SE),外在精度优于0.50‰(2SD),测试精度整体与国内外原有SHRIMP相当,验证了仪器准确度、精密度和稳定性。升级高真空样品台后,SHRIMP Ⅴ样品腔真空度优于2.5×10−8torr(原有SHRIMP为4.0×10−8torr),进一步提高了极限真空及重复定位能力和分辨力,更有利于氧等稳定同位素分析,并为今后传统无水矿物水含量的测试提供了可能。
Abstract:Oxygen isotope analysis can provide important genetic information for the formation and evolution of rocks, hydrothermal fluids, and mineral deposits. It is a powerful tool for petrology and mineral deposits research. Secondary ion mass spectrometry (SIMS) is widely used for oxygen isotopes analysis of accessory minerals such as zircon with its advantage of its unique in situ microanalysis. However, since the advent of SHRIMP, there has always been a problem of sample chamber vacuum damage caused by heating and deflation during the movement of the sample stage. In order to maintain a stable high level of vacuum in the sample chamber and ensure the accuracy of oxygen isotope testing, an in situ microanalytical method of oxygen isotopes in zircon was established by using the fifth generation of sensitive high resolution ion microprobe (SHRIMP Ⅴ) with an upgraded piezoceramics driven high vacuum sample stage. The instrument conditions include: the primary ion intensity of 3nA, electron gun energy of −1.9keV, beam spot size of 25μm, source slit width of 120μm, and slit widths of both 18O− and 16O− receivers of 300μm. The system was adjusted by using zircon standard samples Temora 2 and Qinghu, and the obtained signal intensity of 16O was 1.2×109cps. The standard samples R33, FC1 and Tanz were also tested. The results showed that the analysis values of δ18O for zircon standard samples were consistent with the reference values within the error range. Internal analysis accuracy was better than 0.30‰ (2SE), and the external accuracy was better than 0.50‰ (2SD). The overall testing accuracy of zircon oxygen isotope analysis by SHRIMP Ⅴ was comparable to that of existing SHRIMP series instruments in China and abroad, which verified the accuracy, precision and stability of SHRIMP Ⅴ. After upgrading the high vacuum platform, the sample chamber vacuum stability of the SHRIMP Ⅴ was maintained within 2.5×10−8torr (original SHRIMP is 4.0×10−8torr), which further improves the ultimate vacuum, repeat positioning ability and resolution. Besides, it is more conducive to the analysis of stable isotopes such as oxygen and provides the possibility for the future testing of water content in traditional anhydrous minerals.
-
Key words:
- oxygen isotopes /
- SHRIMP Ⅴ /
- high vacuum sample stage /
- zircon /
- in situ microanalytical method
-
-
表 1 SHRIMP Ⅴ样品腔真空统计
Table 1. The vacuum statistics of SHRIMP V sample chamber
SHRIMP Ⅴ
运行时间样品腔真空
(×10−8torr)SHRIMP Ⅴ
运行时间样品腔真空
(×10−8torr)202306 2.1~2.5 202401 1.5~1.7 202307 1.9~2.4 202402 1.5~2.1 202308 1.8~2.3 202403 1.2~2.5 202309 1.7~2.6 202404 1.2~2.7 202310 1.8~2.3 202405 1.5~2.1 202311 1.7~2.6 202406 1.6~2.2 202312 1.6~2.6 202407 1.2~2.6 202408 1.4~2.7 表 2 第1号靶和第2号靶SHRIMP Ⅴ 锆石氧同位素分析结果
Table 2. Results of zircon oxygen isotope analysis on target No.1 and No.2 by SHRIMP Ⅴ.
第1号靶第一组 测试点号 δ18O
(‰)2SE
(‰)测试点号 δ18O
(‰)2SE
(‰)测试点号 δ18O
(‰)2SE
(‰)Temora 2-1 8.38 0.26 R33-1 5.78 0.27 FC1-1 5.51 0.18 Temora 2-2 8.21 0.31 R33-2 5.71 0.11 FC1-2 5.67 0.22 Temora 2-3 8.01 0.13 R33-3 5.39 0.12 FC1-3 5.71 0.26 Temora 2-4 7.83 0.32 R33-4 5.84 0.23 FC1-4 5.86 0.27 Temora 2-5 8.21 0.16 R33-5 5.48 0.09 FC1-5 5.65 0.32 Temora 2-6 8.48 0.20 R33-6 5.57 0.29 FC1-6 5.83 0.28 Temora 2-7 8.18 0.25 R33-7 5.61 0.14 FC1-7 5.61 0.17 Temora 2-8 8.39 0.29 R33-8 5.54 0.10 FC1-8 5.65 0.25 Temora 2-9 8.00 0.27 R33-9 4.74 0.26 FC1-9 5.77 0.20 Temora 2-10 8.12 0.20 R33-10 5.95 0.18 FC1-10 5.68 0.24 Temora 2-11 8.24 0.12 R33-11 5.87 0.20 FC1-11 5.61 0.18 Temora 2-12 8.51 0.18 R33-12 5.62 0.23 FC1-12 5.87 0.25 Temora 2-13 8.21 0.23 R33-13 5.37 0.24 FC1-13 5.78 0.24 Temora 2-14 8.01 0.24 R33-14 6.15 0.32 FC1-14 5.59 0.26 Temora 2-15 8.02 0.18 R33-15 5.63 0.26 FC1-15 5.81 0.32 第1号靶第二组 测试点号 δ18O
(‰)2SE
(‰)测试点号 δ18O
(‰)2SE
(‰)测试点号 δ18O
(‰)2SE
(‰)Temora 2-1 8.09 0.22 R33-1 5.81 0.33 FC1-1 5.85 0.23 Temora 2-2 8.40 0.33 R33-2 5.29 0.22 FC1-2 5.73 0.26 Temora 2-3 8.08 0.22 R33-3 5.57 0.15 FC1-3 5.77 0.16 Temora 2-4 8.62 0.27 R33-4 5.31 0.20 FC1-4 6.21 0.41 Temora 2-5 8.30 0.19 R33-5 5.20 0.19 FC1-5 5.98 0.11 Temora 2-6 7.93 0.14 R33-6 5.22 0.23 FC1-6 5.94 0.19 Temora 2-7 8.19 0.17 R33-7 5.24 0.22 FC1-7 5.62 0.09 Temora 2-8 7.97 0.32 R33-8 5.40 0.26 FC1-8 5.48 0.14 Temora 2-9 8.31 0.13 R33-9 5.55 0.07 FC1-9 5.82 0.19 Temora 2-10 8.14 0.19 R33-10 5.09 0.17 FC1-10 5.86 0.14 Temora 2-11 8.00 0.32 R33-11 5.47 0.18 FC1-11 5.57 0.26 Temora 2-12 8.29 0.17 R33-12 5.68 0.26 FC1-12 5.72 0.17 Temora 2-13 8.65 0.35 R33-13 5.89 0.18 FC1-13 5.58 0.12 Temora 2-14 8.24 0.21 R33-14 5.74 0.10 FC1-14 5.65 0.25 Temora 2-15 8.40 0.18 R33-15 5.21 0.17 FC1-15 5.85 0.25 Temora 2-16 8.50 0.12 R33-16 6.02 0.20 FC1-16 5.92 0.25 Temora 2-17 8.41 0.14 R33-17 5.83 0.13 FC1-17 5.59 0.14 Temora 2-18 7.91 0.15 R33-18 5.83 0.31 FC1-18 5.88 0.22 Temora 2-19 7.81 0.07 R33-19 5.99 0.23 FC1-19 5.55 0.14 Temora 2-20 8.33 0.27 R33-20 5.64 0.10 FC1-20 5.53 0.23 第2号靶 测试点号 δ18O
(‰)2SE
(‰)测试点号 δ18O
(‰)2SE
(‰)测试点号 δ18O
(‰)2SE
(‰)Qinghu-1 5.68 0.15 Qinghu-15 5.55 0.23 Tanz-9 6.37 0.11 Qinghu-2 5.20 0.08 Qinghu-16 5.52 0.25 Tanz-10 6.63 0.29 Qinghu-3 5.20 0.12 Qinghu-17 5.52 0.22 Tanz-11 6.37 0.08 Qinghu-4 5.77 0.28 Qinghu-18 5.62 0.32 Tanz-12 6.42 0.16 Qinghu-5 5.63 0.13 Qinghu-19 5.43 0.14 Tanz-13 6.47 0.17 Qinghu-6 5.15 0.24 Qinghu-20 5.26 0.07 Tanz-14 6.55 0.11 Qinghu-7 5.39 0.13 Tanz-1 6.63 0.11 Tanz-15 6.56 0.19 Qinghu-8 5.50 0.15 Tanz-2 6.49 0.23 Tanz-16 6.68 0.32 Qinghu-9 5.40 0.27 Tanz-3 6.60 0.16 Tanz-17 6.52 0.12 Qinghu-10 5.24 0.26 Tanz-4 6.38 0.21 Tanz-18 6.33 0.12 Qinghu-11 5.20 0.11 Tanz-5 6.18 0.12 Tanz-19 6.75 0.20 Qinghu-12 5.49 0.18 Tanz-6 6.32 0.50 Tanz-20 6.72 0.20 Qinghu-13 5.30 0.16 Tanz-7 6.56 0.29 Qinghu-14 5.69 0.15 Tanz-8 6.73 0.22 注:δ18O=[(18O/16OSample)/(18O/16OVSMOW)-1]×1000‰,18O/16OVSMOW=0.0020052。 -
[1] Valley J W. Oxygen isotopes in zircon[J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 343−385. doi: 10.2113/0530343
[2] 李铁军. 氧同位素在岩石成因研究的新进展[J]. 岩矿测试, 2013, 32(6): 841−849. doi: 10.3969/j.issn.0254-5357.2013.06.002
Li T J. Progress in the application of oxygen isotopes in the study of petrogenesis[J]. Rock and Mineral Analysis, 2013, 32(6): 841−849. doi: 10.3969/j.issn.0254-5357.2013.06.002
[3] 张建锋, 刘汉彬, 石晓, 等. 五氟化溴法测定硅酸盐及氧化物矿物氧同位素组成的影响因素研究[J]. 岩矿测试, 2019, 38(1): 45−54. doi: 10.15898/j.cnki.11-2131/td.201805170062
Zhang J F, Liu H B, Shi X, et al. Study on influence factors for determination of oxygen isotopic composition of silicates and oxide minerals by BrF5 method[J]. Rock and Mineral Analysis, 2019, 38(1): 45−54. doi: 10.15898/j.cnki.11-2131/td.201805170062
[4] Wang X L, Tang M, Moyen J, et al. The onset of deep recycling of supracrustal materials at the Paleo-Mesoarchean boundary[J]. National Science Review, 2022, 3: 009. doi: 10.1093/nsr/nwab136
[5] 陈意, 胡兆初, 贾丽辉, 等. 微束分析测试技术十年(2011~2020)进展与展望[J]. 矿物岩石地球化学通报, 2021, 40(1): 1−35, 253. doi: 10.19658/j.issn.1007-2802.2020.39.097
Chen Y, Hu Z C, Jia L H, et al. Progress of microbeam analytical technologies in the past decada (2011—2020) and prospect[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(1): 1−35, 253. doi: 10.19658/j.issn.1007-2802.2020.39.097
[6] 李献华, 李武显, 王选策, 等. 幔源岩浆在南岭燕山早期花岗岩形成中的作用: 锆石原位 Hf-O同位素制约[J]. 中国科学: 地球科学, 2009, 39(7): 872−887. doi: 10.1007/11430-009-0117-9
Li X H, Li W X, Wang X C, et al. Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China: In situ zircon Hf-O isotopic constraints[J]. Science China Serie D-Earth Science, 2009, 39(7): 872−887. doi: 10.1007/11430-009-0117-9
[7] Whitehouse M J, Nemchin A A. High precision, high accuracy measurement of oxygen isotopes in a large Lunar zircon by SIMS[J]. Chemical Geology, 2009, 261(1-2): 32−42. doi: 10.1016/j.chemgeo.2008.09.009
[8] 董春艳, 万渝生, 龙涛, 等. 华北克拉通大青山—集宁地区古元古代变质沉积岩的锆石氧同位素组成: SHRIMP微区原位分析[J]. 岩石学报, 2016, 32(3): 659−681.
Dong C Y, Wan Y S, Long T, et al. Oxygen isotopic compositions of zircons from Paleoproterozoic metasedimentary rocks in the Daqingshan—Jining area, North China Craton: In situ SHRIMP analysis[J]. Acta Petrologica Sinica, 2016, 32(3): 659−681.
[9] Che X C, Nemchin A, Liu D Y, et al. Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5[J]. Science, 2021, 374: 887−890. doi: 10.1126/science.abl7957
[10] Li Q L, Zhou Q, Liu Y, et al. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts[J]. Nature, 2021, 600: 54−58. doi: 10.1038/s41586-021-04100-2
[11] 周强, 李金英, 梁汉东, 等. 二次离子质谱(SIMS)分析技术及应用进展[J]. 质谱学报, 2004, 25(2): 113−120. doi: 10.3969/j.issn.1004-2997.2004.02.013
Zhou Q, Li J Y, Liang H D, et al. Recent developments on secondary ion mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2004, 25(2): 113−120. doi: 10.3969/j.issn.1004-2997.2004.02.013
[12] 宋彪, 张玉海, 刘敦一. 微量原位分析仪器SHRIMP的产生与锆石同位素地质年代学[J]. 质谱学报, 2002, 23(1): 58−62. doi: 10.3969/j.issn.1004-2997.2002.01.011
Song B, Zhang Y H, Liu D Y. Introduction to the naissance of SHRIMP and its contribution to isotope geology[J]. Journal of Chinese Mass Spectrometry Society, 2002, 23(1): 58−62. doi: 10.3969/j.issn.1004-2997.2002.01.011
[13] 吕畅, 王浩, 杨进辉, 等. 华北克拉通始太古代演化——来自冀东38亿年片麻岩锆石Hf-O同位素的记录[J]. 岩石学报, 2024, 40(3): 689−701. doi: 10.18654/1000-0569/2024.03.02
Lyu C, Wang H, Yang J H, et al. Eoarchean evolution of the North China Craton: Zircon Hf-O isotopic evidence of the ca. 3.8Ga gneiss from Eastern Hebei Province[J]. Acta Petrologica Sinica, 2024, 40(3): 689−701. doi: 10.18654/1000-0569/2024.03.02
[14] 李秋耘, 杨志明, 王瑞, 等. 西藏驱龙矿区中新世侵入岩锆石微量和Hf-O同位素研究[J]. 岩石矿物学杂志, 2021, 40(6): 1023−1048. doi: 10.3969/j.issn.1000-6524.2021.06.001
Li Q G, Yang Z M, Wang R, et al. Zircon trace elemental and Hf-O isotopic compositions of the Miocene magmatic suite in the giant Qulong porphyry copper deposit, Southern Tibet[J]. Acta Petrologica et Mineralogica, 2021, 40(6): 1023−1048. doi: 10.3969/j.issn.1000-6524.2021.06.001
[15] Aubert M, Williams I S, Boljkovac K, et al. In situ oxygen isotope micro-analysis of faunal material and human teeth using a SHRIMP Ⅱ: A new tool for palaeo-ecology and archaeology[J]. Journal of Archaeological Science, 2012, 39(10): 3184−3194. doi: 10.1016/j.jas.2012.05.002
[16] 刘浴辉, 唐国强, 凌潇潇, 等. 二次离子质谱技术在季节分辨石笋δ18O分析中的应用[J]. 中国科学: 地球科学, 2015, 45(9): 1316−1323. doi: 10.1007/s11430-015-5114-6
Liu Y H, Tang G Q, Ling X X, et al. Speleothem annual layers revealed by seasonal SIMS δ18O measure-ments[J]. Science China Earth Sciences, 2015, 45(9): 1316−1323. doi: 10.1007/s11430-015-5114-6
[17] 周丽芹, Williams I S, 刘建辉, 等. 牙形石SHRIMP微区原位氧同位素分析方法[J]. 地质学报, 2012, 86(4): 611−618. doi: 10.3969/j.issn.0001-5717.2012.04.007
Zhou L Q, Williams I S, Liu J H, et al. Methodology of SHRIMP in-situ O isotopes analysis on conodont[J]. Acta Geologica Sinica, 2012, 86(4): 611−618. doi: 10.3969/j.issn.0001-5717.2012.04.007
[18] 周玲, 千琳勃, 赵素梅, 等. 基于耳石核心氧同位素 SHRIMP 分析研究青海湖裸鲤繁殖特征[J]. 岩矿测试, 2023, 42(3): 464−477. doi: 10.15898/j.ykcs.202209280183
Zhou L, Qian L B, Zhao S M, et al. Analyzing the reproductive characteristics of the Naked Carp Gymnocypris Przewalskii (Kessler) based on the oxygen isotopes of otolith core using SHRIMP[J]. Rock and Mineral Analysis, 2023, 42(3): 464−477. doi: 10.15898/j.ykcs.202209280183
[19] 李献华, 唐国强, 龚冰, 等. Qinghu(清湖)锆石: 一个新的U-Pb年龄和O, Hf同位素微区分析工作标样[J]. 科学通报, 2013, 58: 1954−1961. doi: 10.1360/csb2013-58-20-1954
Li X H, Tang G Q, Guo B, et al. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin, 2013, 58: 1954−1961. doi: 10.1360/csb2013-58-20-1954
[20] 李秋立, 杨蔚, 刘宇, 等. 离子探针微区分析技术及其在地球科学中的应用进展[J]. 矿物岩石地球化学通报, 2013, 32(3): 310−327. doi: 10.3969/j.issn.1007-2802.2013.03.004
Li Q L, Yang W, Liu Y, et al. Ion microprobe microanalytical techniques and their applications in Earth sciences[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(3): 310−327. doi: 10.3969/j.issn.1007-2802.2013.03.004
[21] Treble P C, Schmitt A K, Edwards R L, et al. High resolution secondary ionisation mass spectrometry (SIMS) δ18O analyses of Hulu Cave speleothem at the time of Heinrich Event 1[J]. Chemical Geology, 2007, 238(3−4): 197−212. doi: 10.1016/j.chemgeo.2006.11.009
[22] Kita N T, Ushikubo T, Fu B, et al. High precision SIMS oxygen isotope analysis and the effect of sample topography[J]. Chemical Geology, 2009, 264(1-4): 43−57. doi: 10.1016/J.CHEMGEO.2009.02.012
[23] Ickert R B, Hiess J, Williams I S, et al. Determining high precision, in situ, oxygen isotope ratios with a SHRIMP Ⅱ: Analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites[J]. Chemical Geology, 2008, 257(1−2): 114−128. doi: 10.1016/j.chemgeo.2008.08.024
[24] 龙涛, 石坚, 包泽民, 等. 边缘效应和几何效应对SHRIMP IIe MC氧同位素分析精度影响[J]. 分析化学, 2015, 43(12): 1888−1894. doi: 10.11895/j.issn.0253-3820.150581
Long T, Shi J, Bao Z M, et al. Influence of edge effect and X-Y effect on measurement precision in sensitive high resolution ion microprobe Ⅱe MC oxygen isotopes analysis[J]. Chinese Journal of Analytical Chemistry, 2015, 43(12): 1888−1894. doi: 10.11895/j.issn.0253-3820.150581
[25] 刘敦一, 王晨. 国家科技基础条件平台——北京离子探针中心[J]. 岩矿测试, 2012, 31(4): 753−756. doi: 10.3969/j.issn.0254-5357.2012.04.032
Liu D Y, Wang C. The Beijing SHRIMP Centre, National Science and Technology Infrastructure[J]. Rock and Mineral Analysis, 2012, 31(4): 753−756. doi: 10.3969/j.issn.0254-5357.2012.04.032
[26] Avila J N, Ireland T R, Holden P, et al. High-precision, high-accuracy oxygen isotope measurements of zircon reference materials with the SHRIMP-SI[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 85−102. doi: 10.1111/ggr.12298
[27] 杨之青, 刘敦一, 房建国, 等. 高分辨二次离子质谱超高真空样品台的研制[J]. 质谱学报, 2016, 37(5): 408−413. doi: 10.7538/zpxb.2016.37.05.0408
Yang Z Q, Liu D Y, Fang J G, et al. Innovative high resolution 3D sample stage in ultra-high vacuum for SIMS[J]. Journal of Chinese Mass Spectrometry Society, 2016, 37(5): 408−413. doi: 10.7538/zpxb.2016.37.05.0408
[28] Fu B, Bröcker M, Ireland T, et al. Zircon U-Pb, O, and Hf isotopic constraints on Mesozoic magmatism in the Cyclades, Aegean Sea, Greece[J]. International Journal of Earth Sciences, 2015, 104: 75−87. doi: 10.1007/s00531-014-1064-z
[29] Hu Z C, Li X H, Luo T, et al. Tanz zircon megacrysts: A new zircon reference material for the microbeam determination of U-Pb ages and Zr-O isotopes[J]. Journal of Analytical Atomic Spectrometry, 2021, 36: 2715−2734. doi: 10.1039/d1ja00311a
[30] 夏小平, 雷斌, 杨晴, 等. 锆石SIMS氧同位素测试进展[J]. 地质学报, 2015, 89(S1): 88−89.
Xia X P, Lei B, Yang Q, et al. Progress in zircon SIMS oxygen isotope testing[J]. Acta Geological Sinica, 2015, 89(S1): 88−89.
-