中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

人工无本底土壤培养实验下GDGTs的含量与分布特征

苗瑞, 赵增浩, 蔡泽园, 刘旭, 王欢业. 人工无本底土壤培养实验下GDGTs的含量与分布特征[J]. 岩矿测试, 2025, 44(2): 316-329. doi: 10.15898/j.ykcs.202405240120
引用本文: 苗瑞, 赵增浩, 蔡泽园, 刘旭, 王欢业. 人工无本底土壤培养实验下GDGTs的含量与分布特征[J]. 岩矿测试, 2025, 44(2): 316-329. doi: 10.15898/j.ykcs.202405240120
MIAO Rui, ZHAO Zenghao, CAI Zeyuan, LIU Xu, WANG Huanye. Abundance and Distribution of GDGTs in Incubated Artificial Soils with No Fossil Pool[J]. Rock and Mineral Analysis, 2025, 44(2): 316-329. doi: 10.15898/j.ykcs.202405240120
Citation: MIAO Rui, ZHAO Zenghao, CAI Zeyuan, LIU Xu, WANG Huanye. Abundance and Distribution of GDGTs in Incubated Artificial Soils with No Fossil Pool[J]. Rock and Mineral Analysis, 2025, 44(2): 316-329. doi: 10.15898/j.ykcs.202405240120

人工无本底土壤培养实验下GDGTs的含量与分布特征

  • 基金项目: 国家自然科学基金项目(42122021);国家重点研发计划项目(2023YFF0804300);中国科学院青年创新促进会会员项目(2019403)
详细信息
    作者简介: 苗瑞,硕士研究生,研究方向为生物有机地球化学。E-mail: miaorui@ieecas.cn
    通讯作者: 王欢业,博士,研究员,主要从事生物有机地球化学研究。E-mail:wanghy@ieecas.cn
  • 中图分类号: P593

Abundance and Distribution of GDGTs in Incubated Artificial Soils with No Fossil Pool

More Information
  • 微生物来源的甘油二烷基甘油四醚类化合物(GDGTs)是古气候变化研究的重要工具。培养实验有助于明确GDGTs对环境参数的响应机理,检验相关气候代用指标的可靠性。然而目前的GDGTs培养实验主要针对单一菌株或存在本底信号影响,制约了对土壤环境中GDGTs对环境因子精确响应的系统理解。本文利用人工配置的无GDGTs土壤进行了4年相同温度不同土壤含水量(SWC)条件下(0~10%、0~20%、0~30%、0~40%)的实验室培养,以探究无本底培养实验获得的GDGTs的含量与分布特征及其对培养条件的响应。结果表明:①GDGTs含量与SWC正相关,但添加磷酸盐缓冲溶液会抑制GDGTs的产生;②基于野外调查提出的能反映土壤湿度变化的支链与类异戊二烯四醚(BIT)指标与SWC无明显相关性,因而土壤中BIT指标可能间接而非直接响应SWC变化;③本实验条件下6-甲基支链GDGTs(brGDGTs)较5-甲基brGDGTs占绝对主导,导致古温度指标MBT'5ME值极高而MBT'值极低,从培养实验角度证实较高的6-甲基brGDGTs 相对含量会影响brGDGTs古温度指标的准确性。

  • 加载中
  • 图 1  HPLC-Orbitrap Exploris 120上的GDGTs色谱图(以B2样品为例)

    Figure 1. 

    图 2  不同色谱方法和质谱条件下杂质峰的色谱行为(以B2样品为例)

    Figure 2. 

    图 3  培养样品GDGTs的平均丰度

    Figure 3. 

    图 4  培养实验GDGTs含量与最高培养湿度的关系:(a)总GDGTs与培养湿度的关系;(b) brGDGTs和isoGDGTs与培养湿度的关系

    Figure 4. 

    图 5  磷酸盐缓冲溶液对BIT (a)、ACE(b)、MBT'(c)和MBT'5ME(d)指标的影响

    Figure 5. 

    图 6  MBT'5和MBT'6与生长温度的定量关系

    Figure 6. 

    表 1  本研究培养条件、主要GDGTs含量及指标

    Table 1.  Incubation conditions and concentrations of GDGTs in this study

    样品编号 缓冲溶液 含水量
    (%)
    archaeol含量
    (ng/g)
    isoGDGTs含量
    (ng/g)
    brGDGTs含量
    (ng/g)
    ACE BIT IR6ME MBT' MBT'5ME
    A1 + 0~10 0.56 0.81 4.31 19.58 0.91 0.99 0.06 0.87
    A2 + 0~20 6.98 4.86 1.85 42.44 0.36 0.86 0.16 0.59
    A3 + 0~30 13.58 11.99 4.82 47.37 0.34 0.99 0.15 0.93
    A4 + 0~40 8.75 26.73 13.15 19.92 0.33 1 0.07 0.96
    B1 0~10 0.82 9.03 12.75 8.54 0.64 1 0.08 0.98
    B2 0~20 3.93 34.49 5.89 5.17 0.19 0.99 0.03 0.84
    B3 0~30 3.80 48.27 3.39 4.75 0.11 0.99 0.06 0.90
    B4 0~40 3.31 50.26 23.66 3.71 0.45 0.99 0.06 0.97

    注:“+”表示在培养中加入磷酸盐缓冲溶液,“−”表示在培养中未加磷酸盐缓冲溶液。archaeol是一种二醚古菌醇;isoGDGTs和brGDGTs分别为类异戊二烯类GDGTs和支链GDGTs,均属于GDGTs。ACE指标为盐度指标;BIT指标可指示土壤湿度;IR6ME反映的是5-甲基brGDGTs和6-甲基brGDGTs的相对比例;MBT'和MBT'5ME为brGDGTs古温度指标。

    下载: 导出CSV
  • [1]

    Yang H, Pancost R D, Dang X Y, et al. Correlations between microbial tetraether lipids and environmental variables in Chinese soils: Optimizing the paleo-reconstructions in semi-arid and arid regions[J]. Geochimica et Cosmochimica Acta, 2014, 126: 49−69.

    [2]

    郑峰峰, 张传伦, 陈雨霏, 等. 支链四醚膜脂在中国土壤中的分布: 对MBT/CBT指标作为古环境指标可靠性的评估[J]. 中国科学: 地球科学, 2016, 46(6): 782−800. doi: 10.1360/07SCES-2015-0120

    Zheng F F, Zhang C L, Chen Y F, et al. Branched tetraether lipids in Chinese soils: Evaluating the fidelity of MBT/CBT proxies as paleoenvironmental proxies[J]. Science China Earth Sciences, 2016, 46(6): 782−800. doi: 10.1360/07SCES-2015-0120

    [3]

    Sun Q, Chu G Q, Liu M M, et al. Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal[J]. Journal of Geophysical Research, 2011, 116: 12.

    [4]

    Li X M, Wang M D, Hou J Z. Centennial-scale climate variability during the past 2000 years derived from lacustrine sediment on the western Tibetan Plateau[J]. Quaternary International, 2019, 510: 65−75. doi: 10.1016/j.quaint.2018.12.018

    [5]

    Russell J M, Hopmans E C, Loomis S E, et al. Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment: Effects of temperature, pH, and new lacustrine paleotemperature calibrations[J]. Organic Geochemistry, 2018, 117: 56−69. doi: 10.1016/j.orggeochem.2017.12.003

    [6]

    Zhao C, Rohling E J, Liu Z Y, et al. Possible obliquity-forced warmth in southern Asia during the last glacial stage[J]. Science Bulletin, 2021, 66(11): 1136−1145. doi: 10.1016/j.palaeo.2019.109381

    [7]

    Yao Y, Zhao J J, Bauersachs T, et al. Effect of water depth on the TEX86 proxy in volcanic lakes of northeastern China[J]. Organic Geochemistry, 2019, 129: 88−98. doi: 10.1016/j.orggeochem.2019.01.014

    [8]

    李婧婧, 郑峰峰, 徐敏, 等. 长江中下游湖泊GDGTs分布及其环境意义[J]. 地球科学, 2023, 48(11): 4335−4348. doi: 10.3799/dqkx.2022.104

    Li J J, Zheng F F, Xu M, et al. Distribution and environmental implication of GDGTs in lake surface sediments from middle and lower reaches of Yangtze River[J]. Earth Science, 2023, 48(11): 4335−4348. doi: 10.3799/dqkx.2022.104

    [9]

    Xiao W J, Wang Y S, Liu Y S, et al. Predominance of hexamethylated 6-methyl branched glycerol dialkyl glycerol tetraethers in the mariana trench: Source and environmental implication[J]. Biogeosciences, 2020, 17: 2135−2148. doi: 10.5194/bg-17-2135-2020

    [10]

    Wu W Y, Xu Y, Hou S, et al. Origin and preservation of archaeal intact polar tetraether lipids in deeply buried sediments from the South China Sea[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2019, 152: 8. doi: 10.1016/j.dsr.2019.103107

    [11]

    Dong L, Li Z Y, Jia G D. Archaeal ammonia oxidation plays a part in late Quaternary nitrogen cycling in the South China Sea[J]. Earth and Planetary Science Letters, 2019, 509: 38−46. doi: 10.1016/j.jpgl.2018.12.023

    [12]

    Rao Z G, Guo H C, Wei S K, et al. Influence of water conditions on peat brGDGTs: A modern investigation and its paleoclimatic implications[J]. Chemical Geology, 2022, 606: 12. doi: 10.1016/j.chemgeo.2022.120993

    [13]

    Zheng Y, Yu S Y, Fan T Y, et al. Prolonged cooling interrupted the bronze age cultures in northeastern China 3500 years ago[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 574: 110461. doi: 10.1016/j.palaeo.2021.110461

    [14]

    Zang J J, Yang H, Zhang J H, et al. Application of microbial membrane tetraether lipids in speleothems[J]. Frontiers in Ecology and Evolution, 2023, 11: 14. doi: 10.3389/fevo.2023.1117599

    [15]

    Zhao J J, Huang Y S, Yao Y, et al. Calibrating branched GDGTs in bones to temperature and precipitation: Application to Alaska chronological sequences[J]. Quaternary Science Reviews, 2020, 240: 12. doi: 10.1016/j.quascirev.2020.106371

    [16]

    Inglis G N, Bhattacharya T, Hemingway J D, et al. Biomarker approaches for reconstructing terrestrial environmental change[J]. Annual Review of Earth and Planetary Sciences, 2022, 50: 369−394. doi: 10.1146/annurev-earth-032320-095943

    [17]

    姚鹏, 于志刚, 赵美训. GDGT在全球气候变化研究中的应用进展[J]. 中国海洋大学学报(自然科学版), 2011, 41(5): 71−78. doi: 10.16441/j.cnki.hdxb.2011.05.012

    Yao P, Yu Z G, Zhao M X. Advances in application of GDGT in global climate change study[J]. Journal of Ocean University of China, 2011, 41(5): 71−78. doi: 10.16441/j.cnki.hdxb.2011.05.012

    [18]

    Peterse F, Schouten S, van Der Meer J, et al. Distribution of branched tetraether lipids in geothermally heated soils: Implications for the MBT/CBT temperature proxy[J]. Organic Geochemistry, 2009, 40(2): 201−205. doi: 10.1016/j.orggeochem.2008.10.010

    [19]

    Weijers J W H, Schouten S, van Den Donker J C, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils[J]. Geochimica et Cosmochimica Acta, 2007, 71(3): 703−713. doi: 10.1016/j.gca.2006.10.003

    [20]

    Zheng F F, Chen Y F, Xie W, et al. Diverse biological sources of core and in tact polar isoprenoid GDGTs in terrace soils from southwest of China: Implications for their use as environmental proxies[J]. Chemical Geology, 2019, 522: 108−120. doi: 10.1016/j.chemgeo.2019.05.017

    [21]

    Dang X Y, Yang H, Naafs B D A, et al. Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils[J]. Geochimica et Cosmochimica Acta, 2016, 189: 24−36. doi: 10.1016/j.gca.2016.06.004

    [22]

    Wang H Y, Liu W G, Zhang C L. Dependence of the cyclization of branched tetraethers on soil moisture in alkaline soils from arid-subhumid China: Implications for palaeorainfall reconstructions on the Chinese Loess Plateau[J]. Biogeosciences, 2014, 11(23): 6755−6768. doi: 10.5194/bg-11-6755-2014

    [23]

    Dirghangi S S, Pagani M, Hren M T, et al. Distribution of glycerol dialkyl glycerol tetraethers in soils from two environmental transects in the USA[J]. Organic Geochemistry, 2013, 59: 49−60. doi: 10.1016/j.orggeochem.2013.03.009

    [24]

    Wang H Y, Liu W G, Zhang C L, et al. Branched and isoprenoid tetraether (BIT) index traces water content along two marsh-soil transects surrounding Lake Qinghai: Implications for paleo-humidity variation[J]. Organic Geochemistry, 2013, 59: 75−81. doi: 10.1016/j.orggeochem.2013.03.011

    [25]

    de Jonge C, Hopmans E C, Zell C I, et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: Implications for palaeoclimate reconstruction[J]. Geochimica et Cosmochimica Acta, 2014, 141: 97−112. doi: 10.1016/j.gca.2014.06.013

    [26]

    Menges J, Huguet C, Alcañiz J M, et al. Influence of water availability in the distributions of branched glycerol dialkyl glycerol tetraether in soils of the Iberian Peninsula[J]. Biogeosciences, 2014, 11(10): 2571−2581. doi: 10.5194/bg-11-2571-2014

    [27]

    Halamka T A, Mcfarlin J M, Younkin A D, et al. Oxygen limitation can trigger the production of branched GDGTs in culture[J]. Geochemical Perspectives Letters, 2021, 19: 36−39. doi: 10.7185/geochemlet.2132

    [28]

    Zeng Z Y, Xiao W J, Zheng F F, et al. Enhanced production of highly methylated brGDGTs linked to anaerobic bacteria from sediments of the Mariana Trench[J]. Frontiers in Marine Science, 2023, 10: 1233560.

    [29]

    Huguet A, Meador T B, Laggoun-Défarge F, et al. Production rates of bacterial tetraether lipids and fatty acids in peatland under varying oxygen concen-trations[J]. Geochimica et Cosmochimica Acta, 2017, 203: 103−116. doi: 10.1016/j.gca.2017.01.012

    [30]

    Huguet A, Fosse C, Laggoun-Defarge F, et al. Occurrence and distribution of glycerol dialkyl glycerol tetraethers in a French peat bog[J]. Geochimica et Cosmochimica Acta, 2010, 74(12): A436. doi: 10.1016/j.orggeochem.2010.02.015

    [31]

    Chen Y F, Zheng F F, Yang H, et al. The Production of diverse brGDGTs by an acidobacterium providing a physiological basis for paleoclimate proxies[J]. Geochimica et Cosmochimica Acta, 2022, 337: 155−165. doi: 10.1016/j.gca.2022.08.033

    [32]

    Halamka T A, Raberg J H, Mcfarlin J M, et al. Production of diverse brGDGTs by acidobacterium solibacter usitatus in response to temperature, pH, and O2 provides a culturing perspective on brGDGT proxies and biosynthesis[J]. Geobiology, 2022, 21(1): 102−118. doi: 10.1111/gbi.12525

    [33]

    Weber Y, Damsté J S S, Zopfi J, et al. Redox-dependent niche differentiation provides evidence for multiple bacterial sources of glycerol tetraether lipids in lakes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(43): 10926−10931. doi: 10.1073/pnas.1805186115

    [34]

    Chen Y F, Li J J, Chen S Z, et al. Potential influence of bacterial community structure on the distribution of brGDGTs in surface sediments from Yangtze River Estuary to East China Sea[J]. Chemical Geology, 2024, 647: 15. doi: 10.1016/j.chemgeo.2024.121934

    [35]

    de Jonge C, Radujkovic D, Sigurdsson B D, et al. Lipid biomarker temperature proxy responds to abrupt shift in the bacterial community composition in geothermally heated soils[J]. Organic Geochemistry, 2019, 137: 13. doi: 10.1016/j.orggeochem.2019.07.006

    [36]

    de Jonge C, Kuramae E E, Radujkovic D, et al. The influ-ence of soil chemistry on branched tetraether lipids in mid- and high latitude soils: Implications for brGDGT-based paleothermometry[J]. Geochimica et Cosmochimica Acta, 2021, 310: 95−112. doi: 10.1016/j.gca.2021.06.037

    [37]

    Guo J J, Ma T, Liu N N, et al. Soil pH and aridity influence distributions of branched tetraether lipids in grassland soils along an aridity transect[J]. Organic Geochemistry, 2022, 164: 104347. doi: 10.1016/j.orggeochem.2021.104347

    [38]

    Huguet A, Francez A J, Jusselme M D, et al. A climatic chamber experiment to test the short term effect of increasing temperature on branched GDGT distribution in Sphagnum peat[J]. Organic Geochemistry, 2014, 73: 109−112. doi: 10.1016/j.orggeochem.2014.05.010

    [39]

    Huguet A, Fosse C, Laggoun-Défarge F, et al. Effects of a short-term experimental microclimate warming on the abundance and distribution of branched GDGTs in a French peatland[J]. Geochimica et Cosmochimica Acta, 2013, 105: 294−315. doi: 10.1016/j.gca.2012.11.037

    [40]

    Ofiti N O E, Huguet A, Hanson P J, et al. Peatland warming influences the abundance and distribution of branched tetraether lipids: Implications for temperature reconstruction[J]. Science of the Total Environment, 2024, 924: 171666. doi: 10.1016/j.scitotenv.2024.171666

    [41]

    Martínez-Sosa P, Tierney J E, Meredith L K. Controlled lacustrine microcosms show a brGDGT response to environmental perturbations[J]. Organic Geochemistry, 2020, 145: 8. doi: 10.1016/j.orggeochem.2020.104041

    [42]

    Martínez-Sosa P, Tierney J E. Lacustrine brGDGT response to microcosm and mesocosm incubations[J]. Organic Geochemistry, 2019, 127: 12−22. doi: 10.1016/j.orggeochem.2018.10.011

    [43]

    Ajallooeian F, Deng L, Lever M A, et al. Seasonal temperature dependency of aquatic branched glycerol dialkyl glycerol tetraethers: A mesocosm approach[J]. Organic Geochemistry, 2024, 189: 104742. doi: 10.1016/j.orggeochem.2024.104742

    [44]

    Chen Y F, Zheng F F, Chen S Z, et al. Branched GDGT production at elevated temperatures in anaerobic soil microcosm incubations[J]. Organic Geochemistry, 2018, 117: 12−21. doi: 10.1016/j.orggeochem.2017.11.015

    [45]

    Zhao J J, Tsai V C, Huang Y S. A nonlinear model for resolving the temperature bias of branched glycerol dialkyl glycerol tetraether (brGDGT) temperature proxies[J]. Geochimica et Cosmochimica Acta, 2022, 327: 158−169. doi: 10.1016/j.gca.2022.04.022

    [46]

    Hopmans E C, Schouten S, Damsté J S S. The effect of improved chromatography on GDGT-based palaeoproxies[J]. Organic Geochemistry, 2016, 93: 1−6. doi: 10.1016/j.orggeochem.2015.12.006

    [47]

    Huguet C, Hopmans E C, Febo-Ayala W, et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids[J]. Organic Geochemistry, 2006, 37(9): 1036−1041. doi: 10.1016/j.orggeochem.2006.05.008

    [48]

    Peterse F, van Der Meer J, Schouten S, et al. Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils[J]. Geochimica et Cosmochimica Acta, 2012, 96: 215−229. doi: 10.1016/j.gca.2012.08.011

    [49]

    de Jonge C, Stadnitskaia A, Fedotov A, et al. Impact of riverine suspended particulate matter on the branched glycerol dialkyl glycerol tetraether composition of lakes: The outflow of the Selenga River in Lake Baikal (Russia)[J]. Organic Geochemistry, 2015, 83−84: 241−252. doi: 10.1016/j.orggeochem.2015.04.004

    [50]

    Hopmans E C, Weijers J W H, Schefuß E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224(1): 107−116. doi: 10.1016/j.jpgl.2004.05.012

    [51]

    Turich C, Freeman K H. Archaeal lipids record paleosalinity in hypersaline systems[J]. Organic Geochemistry, 2011, 42(9): 1147−1157. doi: 10.1016/j.orggeochem.2011.06.002

    [52]

    Wang H Y, Liu W G, Zhang C L, et al. Assessing the ratio of archaeol to caldarchaeol as a salinity proxy in highland lakes on the northeastern Qinghai—Tibetan Plateau[J]. Organic Geochemistry, 2013, 54: 69−77. doi: 10.1016/j.orggeochem.2012.09.011

    [53]

    Law K P, Zhang C L L. Current progress and future trends in mass spectrometry-based archaeal lipidomics[J]. Organic Geochemistry, 2019, 134: 45−61. doi: 10.1016/j.orggeochem.2019.04.001

    [54]

    战楠, 孙青, 李琪, 等. 地质环境中生物标志物GDGTs分析技术研究进展[J]. 岩矿测试, 2024, 43(1): 30−46. doi: 10.15898/j.ykcs.202306100077

    Zhan N, Sun Q, Li Q, et al. Research progress in analytical methods of biomarker GDGTs in geological environments[J]. Rock and Mineral Analysis, 2024, 43(1): 30−46. doi: 10.15898/j.ykcs.202306100077

    [55]

    Becker K W, Lipp J S, Zhu C, et al. An improved method for the analysis of archaeal and bacterial ether core lipids[J]. Organic Geochemistry, 2013, 61: 34−44. doi: 10.1016/j.orggeochem.2013.05.007

    [56]

    Yang H, Lü X X, Ding W H, et al. The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT') in soils from an altitudinal transect at Mount Shennongjia[J]. Organic Geochemistry, 2015, 82: 42−53. doi: 10.1016/j.orggeochem.2015.02.003

    [57]

    Wang H Y, Liu W G, Lu H X, et al. Potential degradation effect on paleo-moisture proxies based on the relative abundance of archaeal vs. bacterial tetraethers in loess-paleosol sequences on the Chinese Loess Plateau[J]. Quaternary International, 2017, 436: 173−180. doi: 10.1016/j.quaint.2016.11.004

    [58]

    Peaple M D, Beverly E J, Garza B, et al. Identifying the drivers of GDGT distributions in alkaline soil profiles within the Serengeti ecosystem[J]. Organic Geochemistry, 2022, 169: 14. doi: 10.1016/j.orggeochem.2022.104433

    [59]

    de Jonge C, Guo J J, Hallberg P, et al. The impact of soil chemistry, moisture and temperature on branched and isoprenoid GDGTs in soils: A study using six globally distributed elevation transects[J]. Organic Geochemistry, 2024, 187: 15. doi: 10.1016/j.orggeochem.2023.104706

    [60]

    Wu J, Yang H, Pancost R D, et al. Variations in dissolved O2 in a Chinese lake drive changes in microbial communities and impact sedimentary GDGT distributions[J]. Chemical Geology, 2021, 579: 12. doi: 10.1016/j.chemgeo.2021.120348

    [61]

    晁倩, 赵晖, 侯居峙, 等. 中国干旱-半干旱区表土bGDGTs与气候环境因子数据再分析[J]. 第四纪研究, 2022, 42(2): 449−460. doi: 10.11928/j.issn.1001-7410.2022.02.10

    Chao Q, Zhao H, Hou J Z, et al. Reanalysis of surface soils and climatic and environmental factors in arid and semi-arid regions of China[J]. Quaternary Sciences, 2022, 42(2): 449−460. doi: 10.11928/j.issn.1001-7410.2022.02.10

    [62]

    Zang J J, Lei Y Y, Yang H. Distribution of glycerol ethers in Turpan soils: Implications for use of GDGT-based proxies in hot and dry regions[J]. Frontiers of Earth Science, 2018, 12(4): 862−876. doi: 10.1007/s11707-018-0722-z

    [63]

    Wang H Y, An Z S, Lu H X, et al. Calibrating bacterial tetraether distributions towards in situ soil temperature and application to a loess-paleosol sequence[J]. Quaternary Science Reviews, 2020, 231: 106172. doi: 10.1016/j.quascirev.2020.106172

    [64]

    Naafs B D A, Gallego-Sala A V, Inglis G N, et al. Refining the global branched glycerol dialkyl glycerol tetraether (brGDGT) soil temperature calibration[J]. Organic Geochemistry, 2017, 106: 48−56. doi: 10.1016/j.orggeochem.2017.01.009

    [65]

    Wang H Y, Liu Z H, Zhao H, et al. New calibration of terrestrial brGDGT paleothermometer deconvolves distinct temperature responses of two isomer sets[J]. Earth and Planetary Science Letters, 2024, 626: 118497. doi: 10.1016/j.jpgl.2023.118497

    [66]

    Chen C H, Bai Y, Fang X M, et al. Evaluating the potential of soil bacterial tetraether proxies in westerlies dominating western Pamirs, Tajikistan and implications for paleoenvironmental reconstructions[J]. Chemical Geology, 2021, 559: 12. doi: 10.1016/j.chemgeo.2020.119908

    [67]

    van Bree L G J, Peterse F, Baxter A J, et al. Seasonal variability and sources of in situ brGDGT production in a permanently stratified African crater lake[J]. Biogeosciences, 2020, 17(21): 5443−5463. doi: 10.5194/bg-17-5443-2020

    [68]

    Kou Q Q, Zhu L P, Ju J T, et al. Influence of salinity on glycerol dialkyl glycerol tetraether-based indicators in Tibetan Plateau lakes: Implications for paleotemperature and paleosalinity reconstructions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 601: 12. doi: 10.1016/j.palaeo.2022.111127

    [69]

    Bittner L, de Jonge C, Gil-Romera G, et al. A holocene temperature (brGDGT) record from Garba Guracha, a high-altitude lake in Ethiopia[J]. Biogeosciences, 2022, 19(23): 5357−5374. doi: 10.5194/bg-19-5357-2022

    [70]

    Crampton-Flood E D, Tierney J E, Peterse F, et al. BayMBT: A Bayesian calibration model for branched glycerol dialkyl glycerol tetraethers in soils and peats[J]. Geochimica et Cosmochimica Acta, 2020, 268: 142−159. doi: 10.1016/j.gca.2019.09.043

  • 加载中

(6)

(1)

计量
  • 文章访问数:  270
  • PDF下载数:  54
  • 施引文献:  0
出版历程
收稿日期:  2024-05-24
修回日期:  2024-07-22
录用日期:  2024-07-24
网络出版日期:  2024-09-06
刊出日期:  2025-03-20

目录