中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

环境修复过程中溶解性有机质对镉环境行为影响研究进展

马嘉宝, 刘斯文, 王博, 吴迪, 魏吉鑫, 孙青, 马晨格, 黄毅, 严桃桃. 环境修复过程中溶解性有机质对镉环境行为影响研究进展[J]. 岩矿测试, 2025, 44(3): 516-529. doi: 10.15898/j.ykcs.202406180134
引用本文: 马嘉宝, 刘斯文, 王博, 吴迪, 魏吉鑫, 孙青, 马晨格, 黄毅, 严桃桃. 环境修复过程中溶解性有机质对镉环境行为影响研究进展[J]. 岩矿测试, 2025, 44(3): 516-529. doi: 10.15898/j.ykcs.202406180134
MA Jiabao, LIU Siwen, WANG Bo, WU Di, WEI Jixin, SUN Qing, MA Chenge, HUANG Yi, YAN Taotao. Research Progress on the Effect of Dissolved Organic Matter on the Environmental Behavior of Cadmium in Environmental Remediation[J]. Rock and Mineral Analysis, 2025, 44(3): 516-529. doi: 10.15898/j.ykcs.202406180134
Citation: MA Jiabao, LIU Siwen, WANG Bo, WU Di, WEI Jixin, SUN Qing, MA Chenge, HUANG Yi, YAN Taotao. Research Progress on the Effect of Dissolved Organic Matter on the Environmental Behavior of Cadmium in Environmental Remediation[J]. Rock and Mineral Analysis, 2025, 44(3): 516-529. doi: 10.15898/j.ykcs.202406180134

环境修复过程中溶解性有机质对镉环境行为影响研究进展

  • 基金项目: 中国地质调查局地质调查项目“典型地区健康地质调查”(DD20230118)
详细信息
    作者简介: 马嘉宝,硕士,助理工程师,主要从事环境地球化学研究。E-mail:1870331679@qq.com
    通讯作者: 刘斯文,博士,研究员,主要从事环境地球化学和健康地质调查研究。E-mail:siwenzliu@126.com
  • 中图分类号: X142

Research Progress on the Effect of Dissolved Organic Matter on the Environmental Behavior of Cadmium in Environmental Remediation

More Information
  • 随着经济社会的快速发展和镉(Cd)的持续排放,Cd污染日益成为中国乃至全球面临的重大环境问题。溶解性有机质(DOM)作为有机物中最活跃的组分,其分子量通常在几Da至几百kDa之间。DOM包含的羧基、羟基、酚基等多种活性官能团是环境中诸多重金属的配位体和迁移载体。DOM与Cd之间通过物理吸附、配体交换、表面络合等作用,显著影响着Cd在环境中的形态、生物可利用性、毒性和迁移转化。但从Cd污染修复的角度来看,Cd与DOM的络合作用是控制Cd修复成效的关键因素。DOM可以通过配体交换直接形成DOM-Cd二元络合物。根据DOM、Cd(Ⅱ)和矿物/金属表面阳离子(Mi/Me)的不同桥接位置,也可以形成A型或B型两种三元络合物。DOM来源多样,成分、结构复杂,不同条件下DOM对Cd呈现钝化或活化两种作用,在Cd污染原位钝化修复、淋滤修复或者植物修复中得到广泛应用。本文在总结近年来国内外相关研究基础上,对DOM和Cd的络合作用类型进行了重点评述,分析了DOM分子量、环境pH值、离子强度、温度等因素影响Cd-DOM络合作用及Cd吸附(解吸)机制,在此基础上探讨了DOM在土壤/沉积物Cd污染原位钝化修复、异位修复中的主要应用方向,这些方法有助于降低Cd污染修复环境风险和修复成本。通常情况下,小分子量DOM含有更丰富的官能团和更复杂的络合位点,容易形成可溶性DOM-Cd络合物,特别是对于分子量<30kDa的DOM 组分,可向环境中释放更多的Cd;在较高pH值环境条件下,则有利于增强DOM-Cd络合物的稳定性和土壤对Cd的吸附,而高离子强度对Cd吸附有很强的抑制作用;在Cd污染修复工作中,选择腐殖化程度较高的较大分子量DOM(>30kDa),并配施铁氧化物等无机钝化剂,可明显地提升Cd污染原位钝化修复成效;在Cd的化学淋滤或植物修复中,选择小分子量DOM(<5kDa)以提高污染修复的成效。未来该领域研究建议关注三方面:①不同分子量DOM与Cd的络合作用研究,精准解析DOM内部不同组分的功能基团与Cd的络合作用。②加强多种因素影响和控制下DOM对Cd吸附与解吸、迁移转化和生物有效性研究。③加强DOM在Cd污染修复技术研究,完善DOM与Cd相互作用的数值模拟模型,为Cd污染长期观测工作提供路径指引和数据支撑,更加精准地揭示Cd在环境中的迁移转化过程。

  • 加载中
  • 图 1  元素Cd在自然环境中的吸附、解吸和迁移转化过程

    Figure 1. 

    表 1  三元络合体系对Cd的吸附机理和影响因素

    Table 1.  Adsorption mechanism and influencing factors of Cd in the ternary complexation system

    三元络合体系吸附系统 影响Cd吸附的因素 吸附效果 主要吸附作用类型 参考文献
    针铁矿-柠檬酸-Cd pH 增加 B-tc,矿物吸附 16
    蒙脱石-HA-Cd Cd浓度 增加 B-tc,矿物吸附 29
    纤铁矿-FA-Cd pH,RO/M,时间 增加 Cd-DOM,B-tc,矿物吸附 30
    高岭石-HA/FA-Cd pH,时间,Cd浓度 增加 静电作用,A-tc,矿物吸附 31
    氯磷灰石-纤维素-Cd pH,IS,DOM浓度 增加 B-tc,矿物吸附 32
    膨润土/沸石-DOM-Cd RM/O,Cd浓度 降低 Cd-DOM,B-tc,矿物吸附 33
    铁氢氧化物-HA-Cd pH,时间,RM/O 不详 Cd-DOM,B-tc,矿物吸附 34
    下载: 导出CSV
  • [1]

    Han G, Wang J, Sun H, et al. A critical review on the removal and recovery of hazardous Cd from Cd-containing secondary resources in Cu-Pb-Zn smelting processes[J]. Metals, 2022, 12: 1846. doi: 10.3390/met12111846

    [2]

    Joeri K, Marta P R, Harald B. Molecular probing of DOM indicates a key role of spruce-derived lignin in the DOM and metal cycles of a headwater catchment: Can spruce forest dieback exacerbate future trends in the browning of central European surface waters?[J]. Environmental Science & Technology, 2022, 56(4): 2747−2759. doi: 10.1021/acs.est.1c04719

    [3]

    Mu T T, Wu T, Zhou T, et al. Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China[J]. Science of the Total Environment, 2019, 677(10): 373−381. doi: 10.1007/s10661-024-12654-7

    [4]

    Xiang J, Xu P, Chen W Z, et al. Pollution characteristics and health risk assessment of heavy metals in agricultural soils over the past five years in Zhejiang, Southeast China[J]. International Journal of Environmental Research and Public Health, 2022, 19(22): 14642. doi: 10.3390/ijerph192214642

    [5]

    Chen J, Li K, Hu A, et al. The mechanisms of DOMs derived from bio-stabilized wastewater activated sludge alleviate the adverse effects of Cd-stress in rice seedlings (Oryza sativa L)[J]. Science of the Total Environment, 2022, 845: 157157. doi: 10.1016/j.scitotenv.2022.157157

    [6]

    郝港利, 邓文博, 刘文娟. 芦芽山阔叶林土壤中腐殖酸和富里酸的提取与表征研究[J]. 山西大学学报(自然科学版), 2023, 46(4): 961−968. doi: 10.13451/j.sxu.ns.2022069

    Hao G L, Deng W B, Liu W J, et al. Study on isolation and characterization of soil humic acid and fulvic acid in broadleaf forest from Luya Mountain[J]. Journal of Shanxi University (Natural Science Edition), 2023, 46(4): 961−968. doi: 10.13451/j.sxu.ns.2022069

    [7]

    Ni M F, Li S Y. Ultraviolet humic-like component contributes to riverine dissolved organic matter biodegradation[J]. Journal of Environmental Sciences, 2023, 124: 165−175. doi: 10.1016/j.jes.2021.10.011

    [8]

    Liu M X, Han X K, Liu C Q, et al. Differences in the spectroscopic characteristics of wetland dissolved organic matter binding with Fe3+, Cu2+, Cd2+, Cr3+ and Zn2+[J]. Science of the Total Environment, 2021, 800: 149476. doi: 10.1016/j.scitotenv.2021.149476

    [9]

    Fang W, Wei Y H, Liu J G. Comparative characterization of sewage sludge compost and soil: Heavy metal leaching characteristics[J]. Journal of Hazardous Materials, 2016, 310: 1−10. doi: 10.1016/j.jhazmat.2016.02.025

    [10]

    Cowayd E K, Ohno T, Plante A F. Adsorption and molecular fractionation of dissolved organic matter on iron-bearing mineral matrices of varying crystallinity[J]. Environmental Science & Technology, 2018, 52(3): 1036−1044. doi: 10.1021/acs.est.7b04953

    [11]

    Markus K, Ian C B, Elizabeth K C, et al. Dynamic interactions at the mineral-organic matter interface[J]. Nature Reviews Earth & Environment, 2021, 2: 402−421. doi: 10.1038/s43017-021-00162-y

    [12]

    Fan T T, Wang Y J, Li C B, et al. Effects of soil organic matter on sorption of metal ions on soil clay particles[J]. Soil Science Society of America Journal, 2015, 79(3): 794−802. doi: 10.2136/sssaj2014.06.0245

    [13]

    Chen M S, Ding S M, Li C, et al. High cadmium pollution from sediments in a eutrophic lake caused by dissolved organic matter complexation and reduction of manganese oxide[J]. Water Research, 2021, 190: 116711. doi: 10.1016/j.watres.2020.116711

    [14]

    文萍, 汤佳, 蔡茜茜, 等. 超高温堆肥腐殖酸与Cd(Ⅱ)高效络合机制2DCOS分析[J]. 光谱学与光谱分析, 2020, 40(5): 1534−1540. doi: 10.3964/j.issn.1000-0593(2020)05-1534-07

    Wen P, Tang J, Cai Q Q, et al. Insight into efficient complexation mechanism of Cd(Ⅱ) to hyperthermophilic compost-derived humic acids by two dimensional correlation analyses[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1534−1540. doi: 10.3964/j.issn.1000-0593(2020)05-1534-07

    [15]

    梁明欣, 寇莹莹, 王京刚, 等. 不同生态混凝土坡岸中溶解性有机质与镉的相互作用机理研究[J]. 环境科学研究, 2020, 33(8): 1857−1868. doi: 10.13198/j.issn.1001-6929.2020.02.10

    Liang M X, Kou Y Y, Wang J G, et al. Interaction mechanism of dissolved organic matter and cadmium in different ecological concrete slopes[J]. Research of Environmental Sciences, 2020, 33(8): 1857−1868. doi: 10.13198/j.issn.1001-6929.2020.02.10

    [16]

    吴江彤, 曾安容, 李清兰, 等. 重金属-柠檬酸-针铁矿三元体系的表面络合模型研究[J]. 环境化学, 2021, 40(2): 520−530. doi: 10.7524/j.issn.0254-6108.2020053102

    Wu J T, Zeng A R, Li Q L, et al. Development of surface complexation model of heavy metal-citric acid-goethite ternary system[J]. Environmental Chemistry, 2021, 40(2): 520−530. doi: 10.7524/j.issn.0254-6108.2020053102

    [17]

    金晓丹, 何俊贺, 黄宇钊, 等. 麦饭石在修复水体和土壤中重金属污染方面的研究[J]. 环境科技, 2021, 34(4): 23−28. doi: 10.19824/j.cnki.cn32-1786/x.2021.0052

    Jin X D, He J H, Huang Y Z, et al. The study on immobilization of heavy metal contaminated water and soils by Manfan stone[J]. Environmental Science and Technology, 2021, 34(4): 23−28. doi: 10.19824/j.cnki.cn32-1786/x.2021.0052

    [18]

    Xu Z B, Tsang D C W. Mineral-mediated stability of organic carbon in soil and relevant interaction mechanisms[J]. Eco-Environment & Health, 2024, 3(1): 59−76. doi: 10.1016/j.eehl.2023.12.003

    [19]

    Zhang Y C, Liu X D, Zhang C, et al. A combined first principles and classical molecular dynamics study of clay-soil organic matters (SOMs) interactions[J]. Geochimica et Cosmochimica Acta, 2020, 291(15): 110−125. doi: 10.1016/j.gca.2019.12.022

    [20]

    Qu C C, Chen W L, Hua X P, et al. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors[J]. Environment International, 2019, 131: 1−15. doi: 10.1016/j.envint.2019.104995

    [21]

    Qu C, Chen J, Mortimer M, et al. Humic acids restrict the transformation and the stabilization of Cd by iron(hydr) oxides[J]. Science of the Total Environment, 2022, 430: 128365. doi: 10.1016/j.jhazmat.2022.128365

    [22]

    Wen J J, Li Z W, Jin C S, et al. Fe oxides and fulvic acids together promoted the migration of Cd(Ⅱ) to the root surface of Phragmites australis[J]. Journal of Hazardous Materials, 2022, 425(5): 1−11. doi: 10.1016/j.jhazmat.2021.127998

    [23]

    Martinez C E, Mcbride M B. Dissolved and labile concentrations of Cd, Cu, Pb and Zn in aged ferrihydrite-organic matter systems[J]. Environmental Science and Technology, 1999, 33(5): 745−750. doi: 10.1021/es980576c

    [24]

    易层, 严玉鹏, 王小明, 等. 天然有机质和金属离子在矿物表面的共吸附[J]. 农业环境科学学报, 2018, 37(8): 1574−1583. doi: 10.11654/jaes.2018-0307

    Yi C, Yan Y P, Wang X M, et al. Co-sorption of natural organic matter and metal ions on minerals[J]. Journal of Agro-Environment Science, 2018, 37(8): 1574−1583. doi: 10.11654/jaes.2018-0307

    [25]

    王萌, 雷丽萍, 方敦煌, 等. 巯基修饰和胡敏酸包裹纳米Fe3O4颗粒的制备及其对溶液中Pb2+Cd2+Cu2+的吸附效果研究[J]. 农业环境科学学报, 2011, 30(8): 1669−1674.

    Wang M, Lei L P, Fang D H, et al. Adsorption studies on aqueous Cd2+, Pb2+, Cu2+ ions by thiol and humic acid functionalized Fe3O4 nanoparticles[J]. Journal of Agro-Environment Science, 2011, 30(8): 1669−1674.

    [26]

    王慧, 唐杉, 韩上, 等. 磷对镉离子在针铁矿及针铁矿-胡敏酸复合体表面吸附的影响[J]. 生态与农村环境学报, 2019, 35(5): 659−667. doi: 10.19741/j.issn.1673-4831.2018.0372

    Wang H, Tang S, Han S, et al. The cadmium adsorption on goethite and humic acid coated goethite complexes under phosphate application[J]. Journal of Ecology and Rural Environment, 2019, 35(5): 659−667. doi: 10.19741/j.issn.1673-4831.2018.0372

    [27]

    Silvia O, María D L, Estela M A. Binding of Pb(Ⅱ) in the system humic acid/goethite at acidic pH[J]. Chemosphere, 2006, 65(11): 2313−2321. doi: 10.1016/j.Chemosphere.2006.05.009

    [28]

    唐一夫, 曹长春, 吕鹏. 羟基氧化铁对镉-腐殖酸的吸附研究[J]. 无机盐工业, 2023, 55(8): 124−131. doi: 10.19964/j.issn.1006-4990.2022-0643

    Tang Y F, Cao C C, Lyu P. Study on adsorption of cadmium-humic acid by hydroxyiron oxide[J]. Inorganic Chemicals Industry, 2023, 55(8): 124−131. doi: 10.19964/j.issn.1006-4990.2022-0643

    [29]

    牟海燕, 黄武, 万娟, 等. 不同分子量胡敏酸对蒙脱石吸附镉的影响及作用机制[J]. 工程科学与技术, 2021, 53(5): 207−213. doi: 10.15961/j.jsuese.202001016

    Mu H Y, Huang W, Wan J, et al. Effect and mechanism of humic acid with different molecular weight on adsorption of cadmium on montmorillonite[J]. Advanced Engineering Sciences, 2021, 53(5): 207−213. doi: 10.15961/j.jsuese.202001016

    [30]

    Bu H L, Lei Q K, Tong H, et al. Humic acid controls cadmium stabilization during Fe(Ⅱ)-induced lepidocrocite transformation[J]. Science of the Total Environment, 2023, 861(25): 1−11. doi: 10.1016/j.scitotenv.2022.160624

    [31]

    Hizal J, Apak R, Hoell W H. Modeling competitive adsorption of copper(Ⅱ), lead(Ⅱ), and cadmium(Ⅱ) by kaolinite-based clay mineral/humic acid system[J]. Environmental Progress and Sustainable Energy, 2009, 28(4): 493−506. doi: 10.1002/ep.10331

    [32]

    Li Z L, Gong Y Y, Zhao D Y, et al. Enhanced removal of zinc and cadmium from water using carboxymethyl cellulose-bridged chlorapatite nanoparticles[J]. Chemosphere, 2021, 263(1): 1−11. doi: 10.1016/j.chemosphere.2020.128038

    [33]

    Zhou W J, Ren L W, Zhu L Z. Reducement of cadmium adsorption on clay minerals by the presence of dissolved organic matter from animal manure[J]. Environmental Pollution, 2017, 223(16): 247−254. doi: 10.1016/j.envpol.2017.01.019

    [34]

    Du H H, Huang Q Y, Lei M, et al. Sorption of Pb(Ⅱ) by nanosized ferrihydrite organo-mineral composites formed by adsorption versus coprecipitation [J]. ACS Earth and Space Chemistry, 2018, 2(6): 556−564. doi: 10.1021/acsearthspacechem.8b00005

    [35]

    Vermeer A W P, McCulloch J K, Riemsdijk W H, et al. Metal ion adsorption to complexes of humic acid and metal oxides: Deviations from the additivity rule[J]. Environmental Science & Technology, 1999, 33(21): 3892−3897. doi: 10.1021/es990260k

    [36]

    Du H, Qu C, Liu J, et al. Molecular investigation on the binding of Cd(Ⅱ) by the binary mixtures of montmorillonite with two bacterial species[J]. Environmental Pollution, 2017, 229: 871−878. doi: 10.1016/j.envpol.2017.07.052

    [37]

    Zhang X Y, Su C, Liu X Y, et al. Periodical changes of dissolved organic matter (DOM) properties induced by biochar application and its impact on downward migration of heavy metals under flood conditions[J]. Journal of Cleaner Production, 2020, 275(1): 1−8. doi: 10.1016/j.jclepro.2020.123787

    [38]

    Borrok D, Aumend K, Fein J B. Significance of ternary bacteria-metal-natural organic matter complexes determined through experimentation and chemical equilibrium modeling[J]. Chemical Geology, 2008, 238(1): 44−62. doi: 10.1016/j.chemgeo.2006.10.013

    [39]

    Bai H C, Jiang Z M, He M J, et al. Relating Cd2+ binding by humic acids to molecular weight: A modeling and spectroscopic study[J]. Journal of Environmental Sciences, 2018, 70(8): 154−165. doi: 10.1016/j.jes.2017.11.028

    [40]

    于振亚, 杜晓丽, 高参, 等. 道路雨水径流溶解性有机物与重金属结合作用分析[J]. 环境科学学报, 2018, 38(8): 3004−3011. doi: 10.13671/j.hjkxxb.2018.0225

    Yu Z Y, Du X L, Gao C, et al. Complexation between heavy metals and dissolved organic matters in road stormwater runoffs[J]. Acta Scientiae Circumstantiae, 2018, 38(8): 3004−3011. doi: 10.13671/j.hjkxxb.2018.0225

    [41]

    姚文斌. 不同分子量有机酸与镉的络合作用及对土壤中镉固持/释放的影响机制[D]. 长沙: 中南大学, 2023: 1−61.

    Yao W B. The complexation of different molecular weight organic acids with cadmium and their impact mechanism on cadmium sequestration/release in soil[D]. Changsha: Central South University, 2023: 1−61.

    [42]

    Ni L, Su L, Wang P, et al. The characterization of dissolved organic matter extracted from different sources and their influence on cadmium uptake by microcystis aeruginosa[J]. Environmental Toxicology & Chemistry, 2017, 36(7): 1856−1863. doi: 10.1002/etc.3728

    [43]

    Tikhonov V V, Voronova E N, Karpukhin M M, et al. Effects of dissolved organic matter fractions of varying molecular weights and Cd2+ on Scenedesmus obliquus growth[J]. Eurasian Soil Science, 2022, 55(7): 978−987. doi: 10.1134/S1064229322070110

    [44]

    Liang Y, Hou M B, Zhang W, et al. Effects of colloidal and dissolved organic matters on Cd adsorption in soil[J]. Journal of Agro-Environment Science, 2023, 42(6): 1285−1293. doi: 10.11654/jaes.2022-1238

    [45]

    薛向东, 杨宸豪, 于荐麟, 等. 圩区河道底泥腐殖酸对重金属和抗生素的共吸附[J]. 环境科学, 2021, 42(6): 2856−2867. doi: 10.13227/j.hjkx.202010152

    Xue X D, Yang C H, Yu J L, et al. Coadsorption of heavy metal and antibiotic onto humic acid from polder river sediment[J]. Environmental Science, 2021, 42(6): 2856−2867. doi: 10.13227/j.hjkx.202010152

    [46]

    吴洪燕, 李清君, 陈士更, 等. 不同分子量腐植酸的结构特征及其对土壤镉有效性的影响[J]. 土壤, 2022, 54(6): 1233−1239. doi: 10.13758/j.cnki.tr.2022.06.018

    Wu H Y, Li Q J, Chen S G, et al. Structural characteristics of humic acids with different molecular weights and their effect on cadmium availability in soil[J]. Soils, 2022, 54(6): 1233−1239 . doi: 10.13758/j.cnki.tr.2022.06.018

    [47]

    Zhang X Q, Li Y, Ye J, et al. The spectral characteristics and cadmium complexation of soil dissolved organic matter in a wide range of forest lands[J]. Environmental Pollution, 2022, 299: 118834. doi: 10.1016/j.envpol.2022.118834

    [48]

    Kozyatnyk I, Bounchet S, Bjorn E, et al. Fractionation and size-distribution of metal and metalloid contaminants in a polluted groundwater rich in dissolved organic matter[J]. Journal of Hazardous Materials, 2016, 318: 194−202. doi: 10.1016/j.jhazmat.2016.07.024

    [49]

    Xie J, Dong A Q, Liu J, et al. Relevance of dissolved organic matter generated from green manuring of Chinese milk vetch in relation to water-soluble cadmium[J]. Environmental Science & Pollution Research, 2019, 26(16): 16409−16421. doi: 10.1007/s11356-019-05114-0

    [50]

    Wang Z, Han R X, Muhammad A, et al. Correlative distribution of DOM and heavy metals in the soils of the Zhangxi watershed in Ningbo City, East of China[J]. Environmental Pollution, 2022, 299: 118811. doi: 10.1016/j.envpol.2022.118811

    [51]

    胡斌, 王沛芳, 张楠楠, 等. 基于光谱特征的pH对溶解态有机质与铜相互作用的影响研究[J]. 光谱学与光谱分析, 2023, 43(5): 1628−1635. doi: 10.3964/j.issn.1000-0593(2023)-05-1628-08

    Hu B, Wang P F, Zhang N N, et al. Effect of pH on interaction between dissolved organic matter and copper: based on spectral features[J]. Spectroscopy and Spectral Analysis, 2023, 43(5): 1628−1635. doi: 10.3964/j.issn.1000-0593(2023)-05-1628-08

    [52]

    Shi W J, Lü C W, He J, et al. Nature differences of humic acids fractions induced by extracted sequence as explanatory factors for binding characteristics of heavy metals[J]. Ecotoxicology and Environmental Safety, 2018, 154: 59−68. doi: 10.1016/j.ecoenv.2018.02.013

    [53]

    Welikala D, Lehto N, Hartland A, et al. Cadmium mobilisation by dissolved organic matter in contaminated soils amended with compost and peat[J]. Geophysical Research Abstracts, 2019, 21(1): 1.

    [54]

    Tang X Y, Hidetaka K, Katsuhiro S. Liming effects on dissolved and colloid-associated transport of cadmium in soil under intermittent simulated rainfall[J]. Journal of Hazardous Materials, 2020, 400: 123244. doi: 10.1016/j.jhazmat.2020.123244

    [55]

    邵坤, 赵改红, 赵朝辉. 腐植酸改性强化磁铁矿吸附水体中铅镉的实验研究[J]. 岩矿测试, 2019, 38(6): 715−723. doi: 10.15898/j.y-cnki.112131/d201901250017

    Shao K, Zhao G H, Zhao Z H. Enhancement of Pb and Cd adsorption in water samples by magnetite using humic acid as modifier[J]. Rock and Mineral Analysis, 2019, 38(6): 715−723. doi: 10.15898/j.y-cnki.112131/d201901250017

    [56]

    于倩雯, 吴寅凯, 尹俊权, 等. DOM对飞灰中重金属溶出影响及环境风险评估[J]. 环境科学与技术, 2022, 45(12): 174−181. doi: 10.19672/j.cnki.1003-6504.1349.22.338

    Yu Q W, Wu Y K, Yin J Q, et al. Effects of DOM on leaching of heavy metals in fly ash and environmental risk assessment[J]. Environmental Science & Technology, 2022, 45(12): 174−181. doi: 10.19672/j.cnki.1003-6504.1349.22.338

    [57]

    Wang P C, Peng H, Liu J L, et al. Effects of exogenous dissolved organic matter on the adsorption-desorption behaviors and bioavailabilities of Cd and Hg in a plant-soil system[J]. The Science of the Total Environment, 2020, 728: 138252. doi: 10.1016/j.scitotenv.2020.138252

    [58]

    李静, 林青, 徐绍辉. 不同pH/离子强度时Cu/Cd复合污染土壤解吸和迁移特征[J]. 土壤学报, 2023, 60(4): 1026−1034.

    Li J, Lin Q, Xu S H. Desorption and migration characteristics of Cu/Cd composite contaminated soil under different pH/ionic strength[J]. Acta Pedologica Sinica, 2023, 60(4): 1026−1034.

    [59]

    刘小兰, 宋志鑫, 宋刚福, 等. 水体溶解性有机质与重金属影响机理的研究进展[J]. 环境科技, 2024, 37(2): 62−68. doi: 10.19824/j.cnki.cn32-1786/x.2024.0021

    Liu X L, Song Z X, Song G F, et al. Research progress on interaction mechanism between dissolved organic matter and heavy metals in water[J]. Environmental Science and Technology, 2024, 37(2): 62−68. doi: 10.19824/j.cnki.cn32-1786/x.2024.0021

    [60]

    曾祥峰, 王祖伟, 魏树和, 等. 碱性条件下胡敏酸吸附镉的特征研究[J]. 生态环境学报, 2014, 23(10): 1691−1696. doi: 10.16258/j.cnki.1674-5906.2014.10.015

    Zeng X F, Wang Z W, Wei S H, et al. Adsorption features of cadmium by humic acid in alkaline conditions[J]. Ecology and Environmental Sciences, 2014, 23(10): 1691−1696. doi: 10.16258/j.cnki.1674-5906.2014.10.015

    [61]

    郑骁, 王学松, 陈光, 等. 离子强度和pH对针铁矿吸附水溶液中Cd(Ⅱ)的影响[J]. 环境工程, 2019, 37(7): 119−123. doi: 10.13205/j.hjgc.201907022

    Zheng X, Wang X S, Chen G, et al. Effect of ionic strength and pH on the adsorption of Cd(Ⅱ) on goethite from aqueous solutions [J]. Environmental Engineering, 2019, 37(7): 119−123. doi: 10.13205/j.hjgc.201907022

    [62]

    张康, 戴亮, 赵伟繁, 等. 污泥腐殖酸对Cd2+的吸附特性[J]. 环境科学研究, 2020, 33(6): 1459−1468. doi: 10.13198/j.issn.1001-6929.2020.04.14

    Zhang K, Dai L, Zhao W F, et al. Adsorption properties of sludge-based humic acid to Cd2+[J]. Research of Environmental Sciences, 2020, 33(6): 1459−1468. doi: 10.13198/j.issn.1001-6929.2020.04.14

    [63]

    杜彩艳, 祖艳群, 李元. pH和有机质对土壤中镉和锌生物有效性影响研究[J]. 云南农业大学学报, 2005, 20(4): 539−543.

    Du C Y, Zu Y Q, Li Y. Effect of pH and organic matter on the bioavailability Cd and Zn in soil[J]. Journal of Yunnan Agricultural University, 2005, 20(4): 539−543.

    [64]

    Tang H M, Xiao B H, Xiao P W. Interaction of Ca2+ and soil humic acid characterized by a joint experimental platform of potentiometric titration, UV–visible spectroscopy, and fluorescence spectroscopy[J]. Acta Geochimica, 2021, 40(3): 300−311. doi: 10.1007/s11631-021-00453-7

    [65]

    He E, Lu C W. Binding characteristics of Cu2+ to natural humic acid fractions sequentially extracted from the lake sediments[J]. Environmental Science & Pollution Research, 2016, 23(22): 22667−22677. doi: 10.1007/s11356-016-7487-2

    [66]

    Zhang Z R, Shi W J. Binding mechanism between fulvic acid and heavy metals: Integrated interpretation of binding experiments, fraction characterizations, and models[J]. Water Air & Soil Pollution, 2020, 231(4): 1−12. doi: 10.1007/s11270-020-04558-2

    [67]

    Hu X P, Qu C C, Han Y, et al. Elevated temperature altered the binding sequence of Cd with DOM in arable soils[J]. Chemosphere, 2022, 288(2): 132572. doi: 10.1016/j.Chemosphere.2021.132572

    [68]

    Cornu J Y, Denaix L, Lacoste J. Impact of temperature on the dynamics of organic matter and on the soil-to-plant transfer of Cd, Zn and Pb in a contaminated agricultural soil[J]. Environmental Science and Pollution Research, 2016, 23(4): 2997−3007. doi: 10.1007/s11356-015-5432-4

    [69]

    Tjisse H, Shamim M, Pierre B D, et al. Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate[J]. Environmental Science & Technology, 2013, 47(16): 9182−9189. doi: 10.1021/es400997n

    [70]

    Ye Q T, Ding Z C, Li R, et al. Kinetics of cadmium (Cd), nickel (Ni), and lead (Pb) release from fulvic acid: Role of reassociation reactions and quantitative models[J]. Science of the Total Environment, 2022, 843: 156996. doi: 10.1016/j.scitotenv.2022.156996

    [71]

    Sun C M, Peng L, Chen A W, et al. Effects and possible mechanisms of dissolved organic matter originated from cattle manure on adsorption of cadmium by periphyton[J]. Journal of Water Process Engineering, 2021, 43: 1−8. doi: 10.1016/j.jwpe.2021.102258

    [72]

    叶碧莹, 柏宏成, 刘高云, 等. 天然有机质不同分子量组分对紫色土镉吸附-解吸的影响[J]. 农业环境科学学报, 2019, 38(8): 1963−1972. doi: 10.11654/jaes.2018-1578

    Ye B Y, Bai H C, Liu G Y, et al. Effects of different molecular weight fractions of natural organic matter on the adsorption and desorption of cadmium in purple soil[J]. Journal of Agro-Environment Science, 2019, 38(8): 1963−1972. doi: 10.11654/jaes.2018-1578

    [73]

    Xu P, Sun C, Ye X Z, et al. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil[J]. Ecotoxicology and Environmental Safety, 2016, 132: 94−100. doi: 10.1016/j.ecoenv.2016.05.031

    [74]

    赵芹, 程东会, 王燕, 等. 不同物料堆肥过程中溶解性有机质和腐殖酸的物质结构演化时序差异分析[J]. 环境工程技术学报, 2023, 13(4): 1514−1524. doi: 10.12153/j.issn.1674-991X.20221230

    Zhao Q, Cheng D H, Wang Y, et al. Analysis of the time series difference of the material structure evolution of DOM and humic acid during composting of different materials[J]. Journal of Environmental Engineering Technology, 2023, 13(4): 1514−1524. doi: 10.12153/j.issn.1674-991X.20221230

    [75]

    韩林沛, 李蕾, 徐欣怡, 等. 餐厨垃圾高温预处理堆肥修复镉铅污染土壤潜能及机制[J]. 环境科学, 2025, 46(4): 2537−2546. doi: 10.13227/j.hjkx.202404167

    Han L P, Li L, Xu X Y, et al. Potential and mechanism of high-temperature pretreatment composting of food waste for amendment of cadmium and lead-contaminated soil[J]. Environmental Science, 2025, 46(4): 2537−2546. doi: 10.13227/j.hjkx.202404167

    [76]

    Liang S S, Qing G, Lu J, et al. The influence mechanism of dissolved organic matter on the adsorption of Cd(Ⅱ) by calcite[J]. Environmental Science and Pollution Research International, 2021, 28(28): 1−10. doi: 10.1007/s11356-021-14585-z

    [77]

    Palansooriya K N, Shaheen S M, Chen S S, et al. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review[J]. Environment International, 2020, 134: 105046. doi: 10.1016/j.envint.2019.105046

    [78]

    Yu Z, Liu X, Zhao M, et al. Hyperthermophilic composting accelerates the humification process of sewage sludge: Molecular characterization of dissolved organic matter using EEM–PARAFAC and two-dimensional correlation spectroscopy[J]. Bioresource Technology, 2019, 274: 198−206. doi: 10.1016/j.biortech.2018.11.084

    [79]

    方宇潇, 张维, 崔俊芳, 等. 猪粪源DOM对三峡消落带土壤吸附Cd的影响[J]. 农业环境科学学报, 2020, 39(6): 1240−1248. doi: 10.13254/j.jare.2020.0331

    Fang Y X, Zhang W, Cui J F, et al. Effects of pig manure-derived dissolved organic matter on the adsorption of cadmium to soils in the three gorges reservoir region, China[J]. Journal of Agro-Environment Science, 2020, 39(6): 1240−1248. doi: 10.13254/j.jare.2020.0331

    [80]

    张维, 侯孟彬, 伍诗宇, 等. 猪粪源溶解性有机质对锰矿区耕地土壤中镉迁移的影响[J]. 环境科学研究, 2024, 37(9): 1997−2005. doi: 10.13198/j.issn.1001-6929.2024.05.17

    Zhang W, Hou M B, Wu S Y, et al. Effect of manure-derived dissolved organic matter on the transport of cadmium through tillage soil in a manganese mining area[J]. Research of Environmental Sciences, 2024, 37(9): 1997−2005. doi: 10.13198/j.issn.1001-6929.2024.05.17

    [81]

    Bao Y P, Bolan N S, Lai J H, et al. Interactions between organic matter and Fe (hydr)oxides and their influences on immobilization and remobilization of metal(loid)s: A review[J]. Critical Reviews in Environmental Science and Technology, 2022, 52: 4016−4037. doi: 10.1080/10643389.2021.1974766

    [82]

    Min T, Luo T, Chen L L. Effect of dissolved organic matter on the phytoremediation of Cd-contaminated soil by cotton[J]. Ecotoxicology and Environmental Safety, 2021, 226: 112842. doi: 10.1016/j.ecoenv.2021.112842

    [83]

    Lian M H, Wang J, Ma Y Y. Influence of DOM and its subfractions on the mobilization of heavy metals in rhizosphere soil solution[J]. Scientifc Reports, 2022, 12: 14082. doi: 10.1038/s41598-022-18419-x

    [84]

    Li Y, Fang F, Wei J, et al. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: A three year experiment[J]. Scientific Reports, 2019, 9(1): 12014. doi: 10.1038/s41598-019-48620-4

  • 加载中

(1)

(1)

计量
  • 文章访问数:  101
  • PDF下载数:  29
  • 施引文献:  0
出版历程
收稿日期:  2024-06-18
修回日期:  2025-01-06
录用日期:  2025-01-11
网络出版日期:  2025-01-21
刊出日期:  2025-05-30

目录