Determination of Sulfur in Fly Ash by High Frequency Combustion Infrared Absorption Spectroscopy with Matrix Matching
-
摘要:
粉煤灰中的硫含量过高,会导致后续用作混凝土掺入料时,引起混凝土体积变化从而造成膨胀开裂等问题,准确测定粉煤灰中硫的含量,对实现粉煤灰的合理应用具有重要意义。目前采用硫酸钡质量法测定粉煤灰中硫含量,分析流程较长,且操作繁琐,对人员及操作要求严格,检测效率较低。本文利用扫描电镜-能谱技术(SEM-EDS)分析发现粉煤灰中的硫元素主要与钙结合,为有效地避免基体效应的影响,提出在粉煤灰样品基体中加入硫酸钙制备人工合成校准样品,采用高频燃烧红外吸收法测定粉煤灰中的硫含量。为探究最佳实验方案,设计了以助熔剂(纯铁、钨、锡)加入量,助熔剂和试样的加入顺序为考察因素的四因素三水平的正交试验;并考察分析时间、称样量等参数对硫含量测定的影响。结果表明,校准曲线方程为y=2194.4x+8.21,相关系数r=0.9998,方法检出限为0.00036%(质量分数),定量限为0.0012%(质量分数)。按照实验方法测定实际粉煤灰样品中的硫含量,相对标准偏差(RSD)为0.6%~2.1%,测定值与硫酸钡质量法结果基本吻合。与硫酸钡质量法相比,该方法操作简便,可快速准确测定粉煤灰中的硫含量。
Abstract:Fly ash can be used as a concrete admixture. If the sulfur content in fly ash is too high, the volume of concrete will change, resulting in expansion cracking and other problems. Therefore, accurate determination of sulfur content in fly ash is of great significance for fly ash application. The sulfur content in fly ash is determined by the barium sulfate mass method, which has a complicated process, complicated operation, and strict requirements for personnel and operation. It was found that the sulfur in fly ash was mainly combined with calcium by SEM-EDS. In order to avoid the influence of the matrix effect, a synthetic calibration sample was prepared by adding calcium sulfate to the matrix of the fly ash sample. The sulfur content in fly ash was determined by the high frequency combustion infrared absorption method. To explore the best experimental scheme, the orthogonal test with 4 factors and 3 levels was designed. The 4 factors were quality of flux (iron, tungsten, tin), and the adding order of flux and sample. The influence of analysis time, sample weight and other parameters on the determination of sulfur content was also investigated. The calibration curve equation was y=2194.4x+8.21, the correlation coefficient was r=0.9998, the detection limit of the method was 0.00036% (mass fraction, the same below), and the limit of quantitation was 0.0012%. The relative standard deviation (RSD) of sulfur content in fly ash was 0.6%−2.1% and the results were consistent with those of the barium sulfate mass method. Compared with the barium sulfate mass method, this method is simple to operate and can be used to rapidly and accurately determine sulfur content in actual fly ash sample.
-
Key words:
- high frequency combustion infrared spectroscopy /
- fly ash /
- sulfur /
- flux /
- sample weight
-
-
表 1 粉煤灰校准样品组成及硫元素含量
Table 1. Composition and sulfur content of fly ash reference materials
校准样品
编号校准样品组成 硫含量
(%)0#粉煤灰质量(g) 硫酸钙质量(g) 1# 10 0 0.34 2# 10 0.72 1.85 3# 10 1.18 2.75 4# 10 1.71 3.67 5# 10 2.62 5.10 6# 10 3.27 6.00 表 2 各因素不同水平正交实验结果统计
Table 2. The statistical results of orthogonal experiment for different levels of each factor
四因素 三水平 分析指标K值(%) 纯铁质量 (g) 0.3 10.684 0.6 10.615 0.9 10.656 钨质量 (g) 1.2 10.575 1.4 10.818 1.6 10.562 锡质量 (g) 0.2 10.534 0.4 10.842 0.6 10.579 助熔剂和试样
加入顺序试样+钨、锡、纯铁 10.668 纯铁、钨、锡+试样 10.558 纯铁+试样+钨、锡 10.729 最佳方法 纯铁质量 0.3g,钨质量 1.4g,锡质量 0.4g,
助熔剂和试样加入顺序为:纯铁+试样+钨、锡注:K为每个因素各个水平的硫含量测定值之和。 表 3 称样量对硫测定结果的影响
Table 3. The effect of sample mass on the results of sulfur determination
称样量(g) 硫含量6次测定值(%) 硫含量测定平均值 (%) RSD(%) 0.05 0.354 0.361 0.319 0.372 0.312 0.314 0.339 7.7 0.10 0.304 0.301 0.309 0.299 0.306 0.310 0.305 1.4 0.15 0.297 0.295 0.301 0.291 0.302 0.299 0.298 1.4 0.20 0.265 0.251 0.256 0.26 0.257 0.259 0.258 1.8 0.25 0.225 0.236 0.231 0.234 0.226 0.230 0.230 1.9 表 4 本文方法的精密度及与相关方法比对结果
Table 4. The precision of this method and the comparison results with other methods
实际样品编号 本文方法硫含量6次测定值(%) 硫含量测定平均值
(%)RSD
(%)硫酸钡质量法
测定值(%)S1 0.109 0.110 0.115 0.114 0.113 0.113 0.112 2.1 0.111 S2 0.508 0.501 0.509 0.496 0.506 0.509 0.505 1.0 0.501 S3 1.574 1.585 1.562 1.583 1.563 1.566 1.572 0.6 1.569 -
[1] Guanghui L, Min L, Xin Z, et al. Hydrothermal synthesis of zeolites-calcium silicate hydrate composite from coal fly ash with co-activation of Ca(OH)2-NaOH for aqueous heavy metals removal[J]. International Journal of Mining Science and Technology, 2022, 32(3): 563−573. doi: 10.1016/J.IJMST.2022.03.001
[2] 罗文斌, 许晔, 李中林, 等. Ca/Si 对复合胶凝材料力学性能的影响及复合凝胶材料的水化机理[J]. 有色金属(冶炼部分), 2025(1): 141−152. doi: 10.20237/j.issn.1007-7545.2025.01.018
Luo W B, Xu Y, Li Z L, et al. Effect of Ca/Si on mechanical properties and hydration mechanism of composite cementitious materials[J]. Nonferrous Metals (Extractive Metallurgy), 2025(1): 141−152. doi: 10.20237/j.issn.1007-7545.2025.01.018
[3] 李敏, 彭晓彤, 林晨. 粉煤灰制备免蒸压加气混凝土配合比试验研究[J/OL]. 济南大学学报(自然科学版)(2024-12-12) [2025-02-03]. https://doi.org/10.13349/j.cnki.jdxbn.20241211.001.
Li M, Peng X T, Lin C, et al. Experimental research on proportioning of non-autoclaved aerated concrete prepared by using fly ash [J/OL]. Journal of University of Jinan (Science and Technology) (2024-12-12) [2025-02-03]. https://doi.org/10.13349/j.cnki.jdxbn.20241211.001.
[4] Wang X Y, Lv J Z , Yang J C, et al. Synergistic effects of ground granulated blast furnace slag and circulating fluidized bed fly ash in lime-activated cementitious materials[J]. Case Studies in Construction Materials, 2025, 22: e04259−e04259. doi: 10.1016/J.CSCM.2025.E04259
[5] 王效渊, 张凯信, 雷钰, 等. 高硫粉煤灰-水泥气泡材料电化学阻抗特性的试验研究[J]. 混凝土, 2021(4): 82−86. doi: 10.3969/j.issn.1002-3550.2021.04.020
Wang X Y, Zhang K X, Lei Y, et al. Experimental study on electrochemical impedance characteristics of lightweight materials with high sulfur fly ash and cement bubbles[J]. Concrete, 2021(4): 82−86. doi: 10.3969/j.issn.1002-3550.2021.04.020
[6] Chi M, Huang R. Effect of circulating fluidized bed combustion ash on the properties of roller compacted concrete[J]. Cement & Concrete Composites, 2014, 45: 148−156. doi: 10.1016/j.cemconcomp.2013.10.001
[7] 李阳春, 庞雪飞. 硅烷偶联剂改性超细粉煤灰增强泡沫混凝土防水和隔热性能研究[J]. 塑料科技, 2024(12): 77−80. doi: 10.15925/j.cnki.issn1005-3360.2024.12.014
Li Y C, Pang X F. Waterproof and thermal insulation performance study of foam concrete reinforced by ultrafine fly ash modified by silane coupling agent[J]. Plastics Science and Technology, 2024(12): 77−80. doi: 10.15925/j.cnki.issn1005-3360.2024.12.014
[8] Carneiro G, Bier T, Waida S, et al. Treatment of energy from waste plant fly-ash for blast furnace slag substitution as a supplementary cementitious material[J]. Journal of Cleaner Production, 2025, 490: 144693. doi: 10.1016/J.JCLEPRO.2025.144693
[9] 武宏香, 刘东艳, 刘颖, 等. 红外光谱法测定煤灰中硫含量的研究[J]. 煤质技术, 2018(4): 23−26. doi: 10.3969/j.issn.1007-7677.2018.04.006
Wu H X, Liu D Y, Liu Y, et al. Determination of sulfur content in coal using infrared spectroscopy[J]. Coal Quality Technology, 2018(4): 23−26. doi: 10.3969/j.issn.1007-7677.2018.04.006
[10] 耶曼, 李婧, 马怡飞, 等. 高频红外碳硫仪快速测定镍铅锌矿石中的硫含量[J]. 岩矿测试, 2022, 41(4): 680−687. doi: 10.15898/j.cnki.11-2131/td.202108270109
Ye M, Li J, Ma Y F, et al. Rapid determination of sulfur in nickel-lead-zinc ore by high-frequency infrared carbon and sulfur analyzer[J]. Rock and Mineral Analysis, 2022, 41(4): 680−687. doi: 10.15898/j.cnki.11-2131/td.202108270109
[11] 张高庆, 王录锋. 高频燃烧红外吸收法测定二硼化钛中硫[J]. 冶金分析, 2023, 43(10): 41−46. doi: 10.13228/j.boyuan.issn1000-7571.012115
Zhang G Q, Wang L F. Determination of sulfur in titanium diboride by high frequency combustion infrared absorption method[J]. Metallurgical Analysis, 2023, 43(10): 41−46. doi: 10.13228/j.boyuan.issn1000-7571.012115
[12] 陈倩倩, 张毅, 张健豪, 等. 高频感应燃烧红外吸收光谱法测定碳化硼增强铝基复合材料中碳[J]. 中国无机分析化学, 2024, 14(11): 1576−1580. doi: 10.3969/j.issn.2095-1035.2024.11.014
Chen Q Q, Zhang Y, Zhang J H, et al. Determination of carbon in boron carbide reinforced aluminum matrix composites by high-frequency induction combustion infrared absorption spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(11): 1576−1580. doi: 10.3969/j.issn.2095-1035.2024.11.014
[13] 王林, 王楠. 高频燃烧红外吸收法测定铜铅锌多金属矿中的碳、硫[J]. 中国无机分析化学, 2024, 14(11): 1563−1568. doi: 10.3969/j.issn.2095-1035.2024.11.012
Wang L, Wang N. Determination of carbon and sulfur in copper-lead-zinc polymetallic ores by high frequency combustion infrared absorption method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(11): 1563−1568. doi: 10.3969/j.issn.2095-1035.2024.11.012
[14] 王勇, 李子敬, 刘林, 等. 攀西地区钒钛磁铁矿中硫含量测定方法优化[J]. 岩矿测试, 2024, 43(3): 524−532. doi: 10.15898/j.ykcs.202306270081
Wang Y, Li Z J, Liu L, et al. Optimization of sulfur determination in vanadium-titanium magnetite ore in the Panxi area[J]. Rock and Mineral Analysis, 2024, 43(3): 524−532. doi: 10.15898/j.ykcs.202306270081
[15] Yang S, Gu J, Qian B, et al. Facile synthesis of layered spinel ferrite from fly ash waste as a stable and active ketonisation catalyst[J]. Chemical Engineering Journal, 2024, 502: 157797. doi: 10.1016/J.CEJ.2024.157797
[16] 李建红. 高频燃烧红外吸收法快速测定煤灰中三氧化硫研究[J]. 煤质技术, 2016, 5(3): 18−20. doi: 10.3969/j.issn.1007-7677.2016.03.007
Li J H. Rapid determination of sulfur trioxide in coal ash using high frequency combustion infrared absorption method[J]. Coal Quality Technology, 2016, 5(3): 18−20. doi: 10.3969/j.issn.1007-7677.2016.03.007
[17] 李华昌, 王东杰, 汤淑芳, 等. 基体稀释法控制RExOy中REO及REX/REO标准样品的制备技术[J]. 稀有金属, 2024, 48(3): 448−456. doi: 10.13373/j.cnki.cjrm.XY22040016
Li H C, Wang D J, Tang S F, et al. Preparation technique for reference samples of REO and REX/REO in RExOy controlled by matrix dilution method[J]. Chinese Journal of Rare Metals, 2024, 48(3): 448−456. doi: 10.13373/j.cnki.cjrm.XY22040016
[18] 游俊富, 孙希皎, 曹永明. 粉末样品中某些杂质元素的同位素稀释二次离子质谱定量分析方法的研究[J]. 质谱学报, 1992, 13(1): 40−43.
You J F, Sun X J, Cao Y M. A study on quantitative method for analysis some impurities in powder samples with ID-SIMS[J]. Journal of Chinese Mass Spectrometry Society, 1992, 13(1): 40−43.
[19] 丁爱娟, 郑诗礼, 马淑花, 等. 循环流化床锅炉粉煤灰中硫的赋存状态研究[J]. 矿产综合利用, 2013(2): 58−62. doi: 10.3969/j.issn.1000-6532.2013.02.016
Ding A J, Zheng S L, Ma S H, et al. Study on occurrence of sulfur in fly ash from circulating fluidized bed boiler[J]. Multipurpose Utilization of Mineral Resources, 2013(2): 58−62. doi: 10.3969/j.issn.1000-6532.2013.02.016
[20] 刘迪, 吴锁贞. 粉煤灰中硫形态的X射线荧光光谱法初探[J]. 常熟理工学院学报, 2006, 20(2): 94−101. doi: 10.16101/j.cnki.cn32-1749/z.2006.02.019
Liu D, Wu S Z. The Introduction of several X-ray diffraction techniques[J]. Journal of Changshu Institute of Technology, 2006, 20(2): 94−101. doi: 10.16101/j.cnki.cn32-1749/z.2006.02.019
[21] 肖超, 卢忠远, 徐迅, 等. 机械粉磨对固硫灰中 Ⅱ—CaSO4 晶体特性的影响[J]. 人工晶体学报, 2015, 44(5): 1277−1283. doi: 10.16553/j.cnki.issn1000-985x.2015.05.023
Xiao C, Lu Z Y, Xu X, et al. Influence of mechanical grinding on properties of Ⅱ—CaSO4 crystal residing in circulating fluidized bed combustion fly ashes[J]. Journal of Synthetic Crystals, 2015, 44(5): 1277−1283. doi: 10.16553/j.cnki.issn1000-985x.2015.05.023
[22] 郝慧聪, 杨帆, 张秀艳, 等. 高频燃烧红外吸收法测定氟化镨钕-氟化锂电解质中碳[J]. 冶金分析, 2024, 44(8): 53−58. doi: 10.13228/j.boyuan.issn1000-7571.012420
Hao H C, Yang F, Zhang X Y, et al. Determination of carbon in praseodymium neodymium fluoride-lithium fluoride electrolyte by high-frequency combustion infrared absorption method[J]. Metallurgical Analysis, 2024, 44(8): 53−58. doi: 10.13228/j.boyuan.issn1000-7571.012420
[23] 殷艺丹, 李晖, 张健康, 等. 高频燃烧红外吸收光谱法测定高纯铝粉中碳含量[J]. 中国无机分析化学, 2021, 11(1): 68−72. doi: 10.3969/j.issn.2095-1035.2021.01.014
Yin Y D, Li H, Zhang J K, et al. Determination of carbon in high purity aluminum powder by high-frequency combustion infrared absorption spectro-metry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(1): 68−72. doi: 10.3969/j.issn.2095-1035.2021.01.014
[24] 常国梁, 刘攀, 张毅. 高频感应燃烧-红外吸收光谱法测定蒙乃尔镍铜合金中碳[J]. 冶金分析, 2020, 40(7): 16−21. doi: 10.13228/j.boyuan.issn1000-7571.010990
Chang G L, Liu P, Zhang Y. Determination of carbon in Monel nickel-copper alloy by high frequency induction combustion infrared absorption spectroscopy[J]. Metallurgical Analysis, 2020, 40(7): 16−21. doi: 10.13228/j.boyuan.issn1000-7571.010990
[25] 张高庆, 王录锋. 高频燃烧红外吸收法测定钒钛高炉渣中硫[J]. 冶金分析, 2022, 42(4): 14−18. doi: 10.13228/j.boyuan.issn1000-7571.011603
Zhang G Q, Wang L F. Determination of sulfur in vanadium-titanium bearing slag by high frequency com-bustion infrared absorption method[J]. Metallurgical Analysis, 2022, 42(4): 14−18. doi: 10.13228/j.boyuan.issn1000-7571.011603
[26] 冯丽丽, 宋飞, 张庆建, 等. 高频燃烧红外吸收光谱法测定铅精矿中的硫[J]. 中国无机分析化学, 2021, 11(6): 46−50. doi: 10.3969/j.issn.2095-1035.2021.06.008
Feng L L, Song F, Zhang Q J, et al. Determination of sulfur in lead concentrate by high frequency combustion infrared absorption spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(6): 46−50. doi: 10.3969/j.issn.2095-1035.2021.06.008
[27] 刘林, 王勇. 高频燃烧红外吸收法测定攀西地区钛精矿中硫[J]. 冶金分析, 2024, 44(6): 74−80. doi: 10.13228/j.boyuan.issn1000-7571.012351
Liu L, Wang Y. Determination of sulfur in titanium concentrate from Panxi area by high frequency com-bustion infrared absorption method[J]. Metallurgical Analysis, 2024, 44(6): 74−80. doi: 10.13228/j.boyuan.issn1000-7571.012351
[28] 费发源, 马兴娟, 范志平, 等. 高频燃烧红外吸收光谱法测定一水硬铝石型高硫铝土矿中的硫[J]. 湿法冶金, 2022, 41(6): 558−561. doi: 10.13355/j.cnki.sfyj.2022.06.016
Fei F Y, Ma X J, Fan Z P, et al. Determination of sulfur in diaspore bauxite containing sulfur by high frequency combustion-infrared absorption spectrometry[J]. Hydrometallurgy of China, 2022, 41(6): 558−561. doi: 10.13355/j.cnki.sfyj.2022.06.016
-