中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

基体匹配-高频燃烧红外吸收法测定粉煤灰中的硫

蔡伟亭, 宋君鹏, 张明慧, 王安丽, 荣文娜, 李贝. 基体匹配-高频燃烧红外吸收法测定粉煤灰中的硫[J]. 岩矿测试, 2025, 44(3): 494-501. doi: 10.15898/j.ykcs.202412190263
引用本文: 蔡伟亭, 宋君鹏, 张明慧, 王安丽, 荣文娜, 李贝. 基体匹配-高频燃烧红外吸收法测定粉煤灰中的硫[J]. 岩矿测试, 2025, 44(3): 494-501. doi: 10.15898/j.ykcs.202412190263
CAI Weiting, SONG Junpeng, ZHANG Minghui, WANG Anli, RONG Wenna, LI Bei. Determination of Sulfur in Fly Ash by High Frequency Combustion Infrared Absorption Spectroscopy with Matrix Matching[J]. Rock and Mineral Analysis, 2025, 44(3): 494-501. doi: 10.15898/j.ykcs.202412190263
Citation: CAI Weiting, SONG Junpeng, ZHANG Minghui, WANG Anli, RONG Wenna, LI Bei. Determination of Sulfur in Fly Ash by High Frequency Combustion Infrared Absorption Spectroscopy with Matrix Matching[J]. Rock and Mineral Analysis, 2025, 44(3): 494-501. doi: 10.15898/j.ykcs.202412190263

基体匹配-高频燃烧红外吸收法测定粉煤灰中的硫

详细信息
    作者简介: 蔡伟亭,硕士,工程师,主要从事稀土材料分析检测工作。E-mail:c19220408@163.com
    通讯作者: 王安丽,硕士,高级工程师,主要从事稀土材料分析检测工作。E-mail:Anli_Wang@163.com
  • 中图分类号: O659.2;TF03.1

Determination of Sulfur in Fly Ash by High Frequency Combustion Infrared Absorption Spectroscopy with Matrix Matching

More Information
  • 粉煤灰中的硫含量过高,会导致后续用作混凝土掺入料时,引起混凝土体积变化从而造成膨胀开裂等问题,准确测定粉煤灰中硫的含量,对实现粉煤灰的合理应用具有重要意义。目前采用硫酸钡质量法测定粉煤灰中硫含量,分析流程较长,且操作繁琐,对人员及操作要求严格,检测效率较低。本文利用扫描电镜-能谱技术(SEM-EDS)分析发现粉煤灰中的硫元素主要与钙结合,为有效地避免基体效应的影响,提出在粉煤灰样品基体中加入硫酸钙制备人工合成校准样品,采用高频燃烧红外吸收法测定粉煤灰中的硫含量。为探究最佳实验方案,设计了以助熔剂(纯铁、钨、锡)加入量,助熔剂和试样的加入顺序为考察因素的四因素三水平的正交试验;并考察分析时间、称样量等参数对硫含量测定的影响。结果表明,校准曲线方程为y=2194.4x+8.21,相关系数r=0.9998,方法检出限为0.00036%(质量分数),定量限为0.0012%(质量分数)。按照实验方法测定实际粉煤灰样品中的硫含量,相对标准偏差(RSD)为0.6%~2.1%,测定值与硫酸钡质量法结果基本吻合。与硫酸钡质量法相比,该方法操作简便,可快速准确测定粉煤灰中的硫含量。

  • 加载中
  • 图 1  SEM-EDS分析粉煤灰样品的形貌

    Figure 1. 

    图 2  粉煤灰样品Ca元素(a)和S元素(b)面分布图

    Figure 2. 

    图 3  分析时间对硫测定结果的影响

    Figure 3. 

    图 4  四因素三水平正交实验设计及结果

    Figure 4. 

    表 1  粉煤灰校准样品组成及硫元素含量

    Table 1.  Composition and sulfur content of fly ash reference materials

    校准样品
    编号
    校准样品组成 硫含量
    (%)
    0#粉煤灰质量(g) 硫酸钙质量(g)
    1# 10 0 0.34
    2# 10 0.72 1.85
    3# 10 1.18 2.75
    4# 10 1.71 3.67
    5# 10 2.62 5.10
    6# 10 3.27 6.00
    下载: 导出CSV

    表 2  各因素不同水平正交实验结果统计

    Table 2.  The statistical results of orthogonal experiment for different levels of each factor

    四因素 三水平 分析指标K值(%)
    纯铁质量 (g) 0.3 10.684
    0.6 10.615
    0.9 10.656
    钨质量 (g) 1.2 10.575
    1.4 10.818
    1.6 10.562
    锡质量 (g) 0.2 10.534
    0.4 10.842
    0.6 10.579
    助熔剂和试样
    加入顺序
    试样+钨、锡、纯铁 10.668
    纯铁、钨、锡+试样 10.558
    纯铁+试样+钨、锡 10.729
    最佳方法 纯铁质量 0.3g,钨质量 1.4g,锡质量 0.4g,
    助熔剂和试样加入顺序为:纯铁+试样+钨、锡
    注:K为每个因素各个水平的硫含量测定值之和。
    下载: 导出CSV

    表 3  称样量对硫测定结果的影响

    Table 3.  The effect of sample mass on the results of sulfur determination

    称样量(g) 硫含量6次测定值(%) 硫含量测定平均值 (%) RSD(%)
    0.05 0.354 0.361 0.319 0.372 0.312 0.314 0.339 7.7
    0.10 0.304 0.301 0.309 0.299 0.306 0.310 0.305 1.4
    0.15 0.297 0.295 0.301 0.291 0.302 0.299 0.298 1.4
    0.20 0.265 0.251 0.256 0.26 0.257 0.259 0.258 1.8
    0.25 0.225 0.236 0.231 0.234 0.226 0.230 0.230 1.9
    下载: 导出CSV

    表 4  本文方法的精密度及与相关方法比对结果

    Table 4.  The precision of this method and the comparison results with other methods

    实际样品编号 本文方法硫含量6次测定值(%) 硫含量测定平均值
    (%)
    RSD
    (%)
    硫酸钡质量法
    测定值(%)
    S1 0.109 0.110 0.115 0.114 0.113 0.113 0.112 2.1 0.111
    S2 0.508 0.501 0.509 0.496 0.506 0.509 0.505 1.0 0.501
    S3 1.574 1.585 1.562 1.583 1.563 1.566 1.572 0.6 1.569
    下载: 导出CSV
  • [1]

    Guanghui L, Min L, Xin Z, et al. Hydrothermal synthesis of zeolites-calcium silicate hydrate composite from coal fly ash with co-activation of Ca(OH)2-NaOH for aqueous heavy metals removal[J]. International Journal of Mining Science and Technology, 2022, 32(3): 563−573. doi: 10.1016/J.IJMST.2022.03.001

    [2]

    罗文斌, 许晔, 李中林, 等. Ca/Si 对复合胶凝材料力学性能的影响及复合凝胶材料的水化机理[J]. 有色金属(冶炼部分), 2025(1): 141−152. doi: 10.20237/j.issn.1007-7545.2025.01.018

    Luo W B, Xu Y, Li Z L, et al. Effect of Ca/Si on mechanical properties and hydration mechanism of composite cementitious materials[J]. Nonferrous Metals (Extractive Metallurgy), 2025(1): 141−152. doi: 10.20237/j.issn.1007-7545.2025.01.018

    [3]

    李敏, 彭晓彤, 林晨. 粉煤灰制备免蒸压加气混凝土配合比试验研究[J/OL]. 济南大学学报(自然科学版)(2024-12-12) [2025-02-03]. https://doi.org/10.13349/j.cnki.jdxbn.20241211.001.

    Li M, Peng X T, Lin C, et al. Experimental research on proportioning of non-autoclaved aerated concrete prepared by using fly ash [J/OL]. Journal of University of Jinan (Science and Technology) (2024-12-12) [2025-02-03]. https://doi.org/10.13349/j.cnki.jdxbn.20241211.001.

    [4]

    Wang X Y, Lv J Z , Yang J C, et al. Synergistic effects of ground granulated blast furnace slag and circulating fluidized bed fly ash in lime-activated cementitious materials[J]. Case Studies in Construction Materials, 2025, 22: e04259−e04259. doi: 10.1016/J.CSCM.2025.E04259

    [5]

    王效渊, 张凯信, 雷钰, 等. 高硫粉煤灰-水泥气泡材料电化学阻抗特性的试验研究[J]. 混凝土, 2021(4): 82−86. doi: 10.3969/j.issn.1002-3550.2021.04.020

    Wang X Y, Zhang K X, Lei Y, et al. Experimental study on electrochemical impedance characteristics of lightweight materials with high sulfur fly ash and cement bubbles[J]. Concrete, 2021(4): 82−86. doi: 10.3969/j.issn.1002-3550.2021.04.020

    [6]

    Chi M, Huang R. Effect of circulating fluidized bed combustion ash on the properties of roller compacted concrete[J]. Cement & Concrete Composites, 2014, 45: 148−156. doi: 10.1016/j.cemconcomp.2013.10.001

    [7]

    李阳春, 庞雪飞. 硅烷偶联剂改性超细粉煤灰增强泡沫混凝土防水和隔热性能研究[J]. 塑料科技, 2024(12): 77−80. doi: 10.15925/j.cnki.issn1005-3360.2024.12.014

    Li Y C, Pang X F. Waterproof and thermal insulation performance study of foam concrete reinforced by ultrafine fly ash modified by silane coupling agent[J]. Plastics Science and Technology, 2024(12): 77−80. doi: 10.15925/j.cnki.issn1005-3360.2024.12.014

    [8]

    Carneiro G, Bier T, Waida S, et al. Treatment of energy from waste plant fly-ash for blast furnace slag substitution as a supplementary cementitious material[J]. Journal of Cleaner Production, 2025, 490: 144693. doi: 10.1016/J.JCLEPRO.2025.144693

    [9]

    武宏香, 刘东艳, 刘颖, 等. 红外光谱法测定煤灰中硫含量的研究[J]. 煤质技术, 2018(4): 23−26. doi: 10.3969/j.issn.1007-7677.2018.04.006

    Wu H X, Liu D Y, Liu Y, et al. Determination of sulfur content in coal using infrared spectroscopy[J]. Coal Quality Technology, 2018(4): 23−26. doi: 10.3969/j.issn.1007-7677.2018.04.006

    [10]

    耶曼, 李婧, 马怡飞, 等. 高频红外碳硫仪快速测定镍铅锌矿石中的硫含量[J]. 岩矿测试, 2022, 41(4): 680−687. doi: 10.15898/j.cnki.11-2131/td.202108270109

    Ye M, Li J, Ma Y F, et al. Rapid determination of sulfur in nickel-lead-zinc ore by high-frequency infrared carbon and sulfur analyzer[J]. Rock and Mineral Analysis, 2022, 41(4): 680−687. doi: 10.15898/j.cnki.11-2131/td.202108270109

    [11]

    张高庆, 王录锋. 高频燃烧红外吸收法测定二硼化钛中硫[J]. 冶金分析, 2023, 43(10): 41−46. doi: 10.13228/j.boyuan.issn1000-7571.012115

    Zhang G Q, Wang L F. Determination of sulfur in titanium diboride by high frequency combustion infrared absorption method[J]. Metallurgical Analysis, 2023, 43(10): 41−46. doi: 10.13228/j.boyuan.issn1000-7571.012115

    [12]

    陈倩倩, 张毅, 张健豪, 等. 高频感应燃烧红外吸收光谱法测定碳化硼增强铝基复合材料中碳[J]. 中国无机分析化学, 2024, 14(11): 1576−1580. doi: 10.3969/j.issn.2095-1035.2024.11.014

    Chen Q Q, Zhang Y, Zhang J H, et al. Determination of carbon in boron carbide reinforced aluminum matrix composites by high-frequency induction combustion infrared absorption spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(11): 1576−1580. doi: 10.3969/j.issn.2095-1035.2024.11.014

    [13]

    王林, 王楠. 高频燃烧红外吸收法测定铜铅锌多金属矿中的碳、硫[J]. 中国无机分析化学, 2024, 14(11): 1563−1568. doi: 10.3969/j.issn.2095-1035.2024.11.012

    Wang L, Wang N. Determination of carbon and sulfur in copper-lead-zinc polymetallic ores by high frequency combustion infrared absorption method[J]. Chinese Journal of Inorganic Analytical Chemistry, 2024, 14(11): 1563−1568. doi: 10.3969/j.issn.2095-1035.2024.11.012

    [14]

    王勇, 李子敬, 刘林, 等. 攀西地区钒钛磁铁矿中硫含量测定方法优化[J]. 岩矿测试, 2024, 43(3): 524−532. doi: 10.15898/j.ykcs.202306270081

    Wang Y, Li Z J, Liu L, et al. Optimization of sulfur determination in vanadium-titanium magnetite ore in the Panxi area[J]. Rock and Mineral Analysis, 2024, 43(3): 524−532. doi: 10.15898/j.ykcs.202306270081

    [15]

    Yang S, Gu J, Qian B, et al. Facile synthesis of layered spinel ferrite from fly ash waste as a stable and active ketonisation catalyst[J]. Chemical Engineering Journal, 2024, 502: 157797. doi: 10.1016/J.CEJ.2024.157797

    [16]

    李建红. 高频燃烧红外吸收法快速测定煤灰中三氧化硫研究[J]. 煤质技术, 2016, 5(3): 18−20. doi: 10.3969/j.issn.1007-7677.2016.03.007

    Li J H. Rapid determination of sulfur trioxide in coal ash using high frequency combustion infrared absorption method[J]. Coal Quality Technology, 2016, 5(3): 18−20. doi: 10.3969/j.issn.1007-7677.2016.03.007

    [17]

    李华昌, 王东杰, 汤淑芳, 等. 基体稀释法控制RExOy中REO及REX/REO标准样品的制备技术[J]. 稀有金属, 2024, 48(3): 448−456. doi: 10.13373/j.cnki.cjrm.XY22040016

    Li H C, Wang D J, Tang S F, et al. Preparation technique for reference samples of REO and REX/REO in RExOy controlled by matrix dilution method[J]. Chinese Journal of Rare Metals, 2024, 48(3): 448−456. doi: 10.13373/j.cnki.cjrm.XY22040016

    [18]

    游俊富, 孙希皎, 曹永明. 粉末样品中某些杂质元素的同位素稀释二次离子质谱定量分析方法的研究[J]. 质谱学报, 1992, 13(1): 40−43.

    You J F, Sun X J, Cao Y M. A study on quantitative method for analysis some impurities in powder samples with ID-SIMS[J]. Journal of Chinese Mass Spectrometry Society, 1992, 13(1): 40−43.

    [19]

    丁爱娟, 郑诗礼, 马淑花, 等. 循环流化床锅炉粉煤灰中硫的赋存状态研究[J]. 矿产综合利用, 2013(2): 58−62. doi: 10.3969/j.issn.1000-6532.2013.02.016

    Ding A J, Zheng S L, Ma S H, et al. Study on occurrence of sulfur in fly ash from circulating fluidized bed boiler[J]. Multipurpose Utilization of Mineral Resources, 2013(2): 58−62. doi: 10.3969/j.issn.1000-6532.2013.02.016

    [20]

    刘迪, 吴锁贞. 粉煤灰中硫形态的X射线荧光光谱法初探[J]. 常熟理工学院学报, 2006, 20(2): 94−101. doi: 10.16101/j.cnki.cn32-1749/z.2006.02.019

    Liu D, Wu S Z. The Introduction of several X-ray diffraction techniques[J]. Journal of Changshu Institute of Technology, 2006, 20(2): 94−101. doi: 10.16101/j.cnki.cn32-1749/z.2006.02.019

    [21]

    肖超, 卢忠远, 徐迅, 等. 机械粉磨对固硫灰中 Ⅱ—CaSO4 晶体特性的影响[J]. 人工晶体学报, 2015, 44(5): 1277−1283. doi: 10.16553/j.cnki.issn1000-985x.2015.05.023

    Xiao C, Lu Z Y, Xu X, et al. Influence of mechanical grinding on properties of Ⅱ—CaSO4 crystal residing in circulating fluidized bed combustion fly ashes[J]. Journal of Synthetic Crystals, 2015, 44(5): 1277−1283. doi: 10.16553/j.cnki.issn1000-985x.2015.05.023

    [22]

    郝慧聪, 杨帆, 张秀艳, 等. 高频燃烧红外吸收法测定氟化镨钕-氟化锂电解质中碳[J]. 冶金分析, 2024, 44(8): 53−58. doi: 10.13228/j.boyuan.issn1000-7571.012420

    Hao H C, Yang F, Zhang X Y, et al. Determination of carbon in praseodymium neodymium fluoride-lithium fluoride electrolyte by high-frequency combustion infrared absorption method[J]. Metallurgical Analysis, 2024, 44(8): 53−58. doi: 10.13228/j.boyuan.issn1000-7571.012420

    [23]

    殷艺丹, 李晖, 张健康, 等. 高频燃烧红外吸收光谱法测定高纯铝粉中碳含量[J]. 中国无机分析化学, 2021, 11(1): 68−72. doi: 10.3969/j.issn.2095-1035.2021.01.014

    Yin Y D, Li H, Zhang J K, et al. Determination of carbon in high purity aluminum powder by high-frequency combustion infrared absorption spectro-metry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(1): 68−72. doi: 10.3969/j.issn.2095-1035.2021.01.014

    [24]

    常国梁, 刘攀, 张毅. 高频感应燃烧-红外吸收光谱法测定蒙乃尔镍铜合金中碳[J]. 冶金分析, 2020, 40(7): 16−21. doi: 10.13228/j.boyuan.issn1000-7571.010990

    Chang G L, Liu P, Zhang Y. Determination of carbon in Monel nickel-copper alloy by high frequency induction combustion infrared absorption spectroscopy[J]. Metallurgical Analysis, 2020, 40(7): 16−21. doi: 10.13228/j.boyuan.issn1000-7571.010990

    [25]

    张高庆, 王录锋. 高频燃烧红外吸收法测定钒钛高炉渣中硫[J]. 冶金分析, 2022, 42(4): 14−18. doi: 10.13228/j.boyuan.issn1000-7571.011603

    Zhang G Q, Wang L F. Determination of sulfur in vanadium-titanium bearing slag by high frequency com-bustion infrared absorption method[J]. Metallurgical Analysis, 2022, 42(4): 14−18. doi: 10.13228/j.boyuan.issn1000-7571.011603

    [26]

    冯丽丽, 宋飞, 张庆建, 等. 高频燃烧红外吸收光谱法测定铅精矿中的硫[J]. 中国无机分析化学, 2021, 11(6): 46−50. doi: 10.3969/j.issn.2095-1035.2021.06.008

    Feng L L, Song F, Zhang Q J, et al. Determination of sulfur in lead concentrate by high frequency combustion infrared absorption spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(6): 46−50. doi: 10.3969/j.issn.2095-1035.2021.06.008

    [27]

    刘林, 王勇. 高频燃烧红外吸收法测定攀西地区钛精矿中硫[J]. 冶金分析, 2024, 44(6): 74−80. doi: 10.13228/j.boyuan.issn1000-7571.012351

    Liu L, Wang Y. Determination of sulfur in titanium concentrate from Panxi area by high frequency com-bustion infrared absorption method[J]. Metallurgical Analysis, 2024, 44(6): 74−80. doi: 10.13228/j.boyuan.issn1000-7571.012351

    [28]

    费发源, 马兴娟, 范志平, 等. 高频燃烧红外吸收光谱法测定一水硬铝石型高硫铝土矿中的硫[J]. 湿法冶金, 2022, 41(6): 558−561. doi: 10.13355/j.cnki.sfyj.2022.06.016

    Fei F Y, Ma X J, Fan Z P, et al. Determination of sulfur in diaspore bauxite containing sulfur by high frequency combustion-infrared absorption spectrometry[J]. Hydrometallurgy of China, 2022, 41(6): 558−561. doi: 10.13355/j.cnki.sfyj.2022.06.016

  • 加载中

(4)

(4)

计量
  • 文章访问数:  38
  • PDF下载数:  13
  • 施引文献:  0
出版历程
收稿日期:  2024-12-19
修回日期:  2025-01-24
录用日期:  2025-01-29
网络出版日期:  2025-02-22
刊出日期:  2025-05-30

目录