大陆边缘沉积盆地流体逸散管道地震特征及其成因机制

骆迪, 蔡峰. 大陆边缘沉积盆地流体逸散管道地震特征及其成因机制[J]. 海洋地质前沿, 2017, 33(1): 1-10. doi: 10.16028/j.1009-2722.2017.01001
引用本文: 骆迪, 蔡峰. 大陆边缘沉积盆地流体逸散管道地震特征及其成因机制[J]. 海洋地质前沿, 2017, 33(1): 1-10. doi: 10.16028/j.1009-2722.2017.01001
LUO Di, CAI Feng. SEISMIC CHARACTERISTIC AND GENETIC MECHANISM OF FLUID ESCAPE PIPES IN SEDIMENTARY BASINS OF CONTINENTAL MARGIN[J]. Marine Geology Frontiers, 2017, 33(1): 1-10. doi: 10.16028/j.1009-2722.2017.01001
Citation: LUO Di, CAI Feng. SEISMIC CHARACTERISTIC AND GENETIC MECHANISM OF FLUID ESCAPE PIPES IN SEDIMENTARY BASINS OF CONTINENTAL MARGIN[J]. Marine Geology Frontiers, 2017, 33(1): 1-10. doi: 10.16028/j.1009-2722.2017.01001

大陆边缘沉积盆地流体逸散管道地震特征及其成因机制

  • 基金项目:
    国家自然科学基金(41506085);国土资源部天然气水合物重点实验室开放基金(SHW[2014]-DX-12);“1:25万青岛幅海洋区域地质调查”(试点)项目(GZH200900501)
详细信息
    作者简介: 骆迪(1982—),女,博士后,主要从事海洋综合地球物理及天然气水合物研究工作.E-mail: luodi0927@sina.com
    通讯作者: 蔡峰(1965—),男,博士,研究员,主要从事油气地质与天然气水合物方面的研究工作.E-mail: caifeng@cgs.cn
  • 中图分类号: P736

SEISMIC CHARACTERISTIC AND GENETIC MECHANISM OF FLUID ESCAPE PIPES IN SEDIMENTARY BASINS OF CONTINENTAL MARGIN

More Information
  • 流体逸散管道是深部流体向上运移所形成的通道,在大陆边缘沉积盆地中广泛发育。由地震资料显示,流体逸散管道主要由根部、过路区和末端3部分组成。由于形成机制、起源和流体成分的不同,其组成三要素有不同的表现形式,因此,流体逸散管道类型多样,具有不同的地震反射特征。水力压裂是文献中最常见的一种有关流体逸散管道形成机制的解释,但是,随着地震勘探的发展和研究的不断深入发现,水力压裂不足以解释所有类型的流体逸散管道,还存在其他的成因机制,包括流化侵蚀作用、局部空洞坍塌及同沉积模式等。从流体逸散管道组成三要素的角度描述了不同类型流体逸散管道的地震反射特征,并详细论述了其4种成因机制下的形成过程。

  • 加载中
  • 图 1  流体逸散管道与BSR的不同位置关系(据文献[20])

    Figure 1. 

    图 2  流体逸散管道群分布(据文献[28])

    Figure 2. 

    图 3  纳米比亚近海边缘平行流体逸散管道(据文献[22])

    Figure 3. 

    图 4  直径变化流体逸散管道地震剖面

    Figure 4. 

    图 5  流体逸散管道根部实例

    Figure 5. 

    图 6  流体逸散管道过路区实例(据文献[22])

    Figure 6. 

    图 7  与流体逸散管道相连的麻坑(A)和振幅异常(B)(据文献[35])

    Figure 7. 

    图 8  流体逸散管道水力压裂生长机制概念模型(据文献[21])

    Figure 8. 

    图 9  流体逸散管道流化侵蚀生长机制概念模型(据文献[22])

    Figure 9. 

  • [1]

    Andresen K J. Fluid flow features in hydrocarbon plumbing systems: What do they tell us about the basin evolution?[J]. Marine Geology, 2012, 332-334: 89-108. doi: 10.1016/j.margeo.2012.07.006

    [2]

    Cartwright J. The impact of 3D seismic data on the understanding of compaction, fluid flow and diagenesis in sedimentary basins[J]. Journal of the Geological Society, 2007, 164: 881-893. doi: 10.1144/0016-76492006-143

    [3]

    Huuse M. Jackson C A L, Van Rensbergen P, et al. Subsurface sediment remobilization and fluid flow in sedimentary basins: an overview[J]. Basin Research, 2010, 22(4): 342-360. doi: 10.1111/j.1365-2117.2010.00488.x

    [4]

    Lee H Y, Kimw W, Koo N H, et al. Resolution analysis of shallow marine seismic data acquired using an airgun and an 8-channel streamer cable[J]. Journal of Applied Geophysics, 2014, 105: 203-212. doi: 10.1016/j.jappgeo.2014.03.021

    [5]

    Hustoft S, Mienert J, Bünz S, et al. High-resolution 3D-seismic data indicate focussed fluid migration pathways above polygonal fault systems of the mid-Norwegian margin[J]. Marine Geology, 2007, 245(1-4): 89-106. doi: 10.1016/j.margeo.2007.07.004

    [6]

    L seth H, Wensaas L, Arntsen B, et al. 1 000 m long gas blow-out pipes[C]//63rd Conference & Technical Exhibition, 2001: 524.

    [7]

    Heggland R. Detection of gas migration from a deep source by the use of exploration 3D seismic data[J]. Marine Geology, 1997, 137(1-2): 41-47. doi: 10.1016/S0025-3227(96)00077-1

    [8]

    Gay A, Lopez M, Berndt C, et al. Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin[J]. Marine Geology, 2007, 244(1-4): 68-92. doi: 10.1016/j.margeo.2007.06.003

    [9]

    Løseth H, Gading M, Wensaas L. Hydrocarbon leakage interpreted on seismic data[J]. Marine and Petroleum Geology, 2009, 26(7): 1304-1319. doi: 10.1016/j.marpetgeo.2008.09.008

    [10]

    Kang N K, Yoo D G, Yi B Y, et al. Distribution and origin of seismic chimneys associated with gas hydrate using 2D multi-channel seismic reflection and well log data in the Ulleung Basin, East Sea[J]. Quaternary International, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3cc88c453e80c545f4a8a1d8952a903d

    [11]

    Sun Y, Wu S, Dong D, et al. Gas hydrates associated with gas chimneys in fine-grained sediments of the northern South China Sea[J]. Marine Geology, 2012, 311-314: 32-40. doi: 10.1016/j.margeo.2012.04.003

    [12]

    Sun Q, Wu S, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2012, 315-318: 1-14. doi: 10.1016/j.margeo.2012.05.003

    [13]

    Sun Q, Cartwright J, Wu S, et al. 3D seismic interpretation of dissolution pipes in the South China Sea: Genesis by subsurface, fluid induced collapse[J]. Marine Geology, 2013, 337: 171-181. doi: 10.1016/j.margeo.2013.03.002

    [14]

    Bertoni C, Cartwright J A. 3D seismic analysis of circular evaporite dissolution structures, Eastern Mediterranean[J]. Journal of the Geological Society, 2005, 162(6): 909-926. doi: 10.1144/0016-764904-126

    [15]

    孙启良.南海北部深水盆地流体逸散系统与沉积物变形[D].青岛: 中国科学院研究生院(海洋研究所), 2011.

    [16]

    L seth H, Wensaas L, Arntsen B, et al. 1 000 m long gas blow-out pipes[J]. Marine and Petroleum Geology, 2011, 28(5): 1047-1060. doi: 10.1016/j.marpetgeo.2010.10.001

    [17]

    Berndt C, Bünz S, Mienert J M. Polygonal fault systems on the mid-Norwegian margin: a long-term source for fluid flow[J]. Geological Society, London, Special Publications, 2003, 216: 283-290. doi: 10.1144/GSL.SP.2003.216.01.18

    [18]

    Gorman A R, Holbrook W S, Hornbach M J, et al. Migration of methane gas through the hydrate stability zone in a low-flux hydrate province[J]. Geology, 2002, 30(4): 327-330. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=774444f904bd401463d8d003f4c6ed64

    [19]

    Davies R J, Clarke A L. Methane recycling between hydrate and critically pressured stratigraphic traps, offshore Mauritania[J]. Geology, 2010, 38(1): 963-966. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=514f2717fe94a1e075c8d1aa927fac5a

    [20]

    Hustoft S, Bunz S, Mienert J. Three-dimensional seismic analysis of the morphology and spatial distribution of chimneys beneath the Nyegga pockmark field, offshore mid-Norway[J]. Basin Research, 2010, 22(4): 465-480. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d8e83a81e1940ee5af4a0ba7e1318ae2

    [21]

    Cartwright J, Santamarina C. Seismic characteristics of fluid escape pipes in sedimentary basins: Implications for pipe genesis[J]. Marine and Petroleum Geology, 2015, 65: 126-140. doi: 10.1016/j.marpetgeo.2015.03.023

    [22]

    Moss J L, Cartwright J. 3D seismic expression of km-scale fluid escape pipes from offshore Namibia[J]. Basin Research, 2010, 2010(22): 481-501. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6e819d24160242d8894554fd8b5fda02

    [23]

    Rensbergen P V, Rabaute A, Colpaert A, et al. Fluid migration and fluid seepage in the Connemara Field, Porcupine Basin interpreted from industrial 3D seismic and well data combined with high-resolution site survey data[J]. International Journal of Earth Sciences, 2007, 96(1): 185-197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=12191125b7f5300c471864c1c9a770d2

    [24]

    Karstens J, Berndt C. Seismic chimneys in the Southern Viking Graben-Implications for palaeo fluid migration and overpressure evolution[J]. Earth and Planetary Science Letters, 2015, 412: 88-100. doi: 10.1016/j.epsl.2014.12.017

    [25]

    Sun Z, Wei H, Zhang X, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 95: 37-53. doi: 10.1016/j.dsr.2014.10.005

    [26]

    Netzeband G L, Krabbenhoeft A, Zillmer M, et al. The structures beneath submarine methane seeps: Seismic evidence from Opouawe Bank, Hikurangi Margin, New Zealand[J]. Marine Geology, 2010, 272(1-4): 59-70. doi: 10.1016/j.margeo.2009.07.005

    [27]

    Moss J L, Cartwright J. The spatial and temporal distribution of pipe formation, offshore Namibia[J]. Marine and Petroleum Geology, 2010, 27(6): 1216-1234. doi: 10.1016/j.marpetgeo.2009.12.013

    [28]

    Van Rensbergen P, Rabaute A, Colpaert A, et al. Fluid migration and fluid seepage in the Connemara Field, Porcupine Basin interpreted from industrial 3D seismic and well data combined with high-resolution site survey data[J]. International Journal of Earth Sciences, 2007, 96(1): 185-197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=12191125b7f5300c471864c1c9a770d2

    [29]

    Plaza-Faverola A, Bünz S, Mienert J. Repeated fluid expulsion through sub-seabed chimneys offshore Norway in response to glacial cycles[J]. Earth and Planetary Science Letters, 2011, 305(3-4): 297-308. doi: 10.1016/j.epsl.2011.03.001

    [30]

    Kopf A J. Significance of mud volcanism[J]. Reviews of Geophysics, 2002, 40(2): 2-1-2-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2000RG000093

    [31]

    何永垚, 王英民, 许翠霞, 等.珠江口盆地深水区白云凹陷气烟囱特征及成藏模式[J].海相油气地质, 2012(3): 62-66. doi: 10.3969/j.issn.1672-9854.2012.03.009 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz201203009

    [32]

    Chu H, Sun Y, Qin K, et al. Application of small-scale array high-resolution multi-channel seismic to gas hydrates exploration (in chinese)[J]. Marine Geology Frontiers, 2015, 31(6): 50-54. http://en.cnki.com.cn/Article_en/CJFDTotal-HYDT201506008.htm

    [33]

    Cathles L M, Su Z, Chen D. The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration[J]. Marine and Petroleum Geology, 2010, 27(1): 82-91. doi: 10.1016/j.marpetgeo.2009.09.010

    [34]

    Dondurur D, Cifci G, Drahor M G, et al. Acoustic evidence of shallow gas accumulations and active pockmarks in the zmir Gulf, Aegean sea[J]. Marine and Petroleum Geology, 2011, 28(8): 1505-1516. doi: 10.1016/j.marpetgeo.2011.05.001

    [35]

    Andresen K J, Huuse M. 'Bulls-eye' pockmarks and polygonal faulting in the Lower Congo Basin: Relative timing and implications for fluid expulsion during shallow burial[J]. Marine Geology, 2011, 279(1-4): 111-127. doi: 10.1016/j.margeo.2010.10.016

    [36]

    Hansen J P V, Cartwright J A, Huuse M, et al. 3D seismic expression of fluid migration and mud remobilization on the Gjallar Ridge, offshore mid-Norway[J]. Basin Research, 2005, 17(1): 123-139. doi: 10.1111/j.1365-2117.2005.00257.x

    [37]

    Davies R J, Mathias S A, Moss J, et al. Hydraulic fractures: How far can they go?[J]. Marine and Petroleum Geology, 2012, 37(1): 1-6. doi: 10.1016/j.marpetgeo.2012.04.001

    [38]

    孙启良, 吴时国, 陈端新, 等.南海北部深水盆地流体活动系统及其成藏意义[J].地球物理学报, 2014, 57(12): 4052-4062. doi: 10.6038/cjg20141217

    [39]

    Harrington J F, Noy D J, Horseman S T, et al. Laboratory Study of Gas and Water Flow in the Nordland Shale, Sleipner, North Sea[J]. AAPG Studies in Geology, 2009, 59:521-543. https://cn.bing.com/academic/profile?id=55720a5d5998aaf438e2d3223e0ca932&encoded=0&v=paper_preview&mkt=zh-cn

    [40]

    Nermoen A, Galland O, Jettestuen E, et al. Experimental and analytic modeling of piercement structures[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B10): B10202. doi: 10.1029/2010JB007583

  • 加载中

(9)

计量
  • 文章访问数:  1220
  • PDF下载数:  52
  • 施引文献:  0
出版历程
收稿日期:  2016-11-08
刊出日期:  2017-01-28

目录