SEISMIC CHARACTERISTIC AND GENETIC MECHANISM OF FLUID ESCAPE PIPES IN SEDIMENTARY BASINS OF CONTINENTAL MARGIN
-
摘要:
流体逸散管道是深部流体向上运移所形成的通道,在大陆边缘沉积盆地中广泛发育。由地震资料显示,流体逸散管道主要由根部、过路区和末端3部分组成。由于形成机制、起源和流体成分的不同,其组成三要素有不同的表现形式,因此,流体逸散管道类型多样,具有不同的地震反射特征。水力压裂是文献中最常见的一种有关流体逸散管道形成机制的解释,但是,随着地震勘探的发展和研究的不断深入发现,水力压裂不足以解释所有类型的流体逸散管道,还存在其他的成因机制,包括流化侵蚀作用、局部空洞坍塌及同沉积模式等。从流体逸散管道组成三要素的角度描述了不同类型流体逸散管道的地震反射特征,并详细论述了其4种成因机制下的形成过程。
Abstract:Fluid escape pipes, which are defined hereby as the highly localized vertical to sub-vertical pathways of focused fluid venting from some underlying source region, are developed widely in sedimentary basins of a continental margin. In seismic protiles, a fluid escape pipe can be divided into three components: root zone, leakage zone and pipe terminus. There are many types of fluid escape pathways and their components because of the difference in forming mechanisms, sources and fluid types. Therefore, Fluid escape pipes of different origin have different seismic characteristics. Hydraulic fracturing is frequently proposed as the mechanism for pipe formation. However, with the development of seismic exploration, we find out that hydraulic fracturing only is not enough to explain the formation mechanism of all types of pipes. There are other forming mechanisms including erosive fluidization, local subsurface volume loss collapse and syn-sedimentary process. The paper described the seismic characteristics of different pipes from the perspective of the three components of a fluid escape pipe. The formation processes of the four kinds of genetic mechanisms are also discussed in details.
-
Key words:
- fluid migration /
- fluid escape pipes /
- seismic reflection /
- hydraulic fracturing /
- fluidization
-
-
图 1 流体逸散管道与BSR的不同位置关系(据文献[20])
Figure 1.
图 2 流体逸散管道群分布(据文献[28])
Figure 2.
图 3 纳米比亚近海边缘平行流体逸散管道(据文献[22])
Figure 3.
图 6 流体逸散管道过路区实例(据文献[22])
Figure 6.
图 7 与流体逸散管道相连的麻坑(A)和振幅异常(B)(据文献[35])
Figure 7.
图 8 流体逸散管道水力压裂生长机制概念模型(据文献[21])
Figure 8.
图 9 流体逸散管道流化侵蚀生长机制概念模型(据文献[22])
Figure 9.
-
[1] Andresen K J. Fluid flow features in hydrocarbon plumbing systems: What do they tell us about the basin evolution?[J]. Marine Geology, 2012, 332-334: 89-108. doi: 10.1016/j.margeo.2012.07.006
[2] Cartwright J. The impact of 3D seismic data on the understanding of compaction, fluid flow and diagenesis in sedimentary basins[J]. Journal of the Geological Society, 2007, 164: 881-893. doi: 10.1144/0016-76492006-143
[3] Huuse M. Jackson C A L, Van Rensbergen P, et al. Subsurface sediment remobilization and fluid flow in sedimentary basins: an overview[J]. Basin Research, 2010, 22(4): 342-360. doi: 10.1111/j.1365-2117.2010.00488.x
[4] Lee H Y, Kimw W, Koo N H, et al. Resolution analysis of shallow marine seismic data acquired using an airgun and an 8-channel streamer cable[J]. Journal of Applied Geophysics, 2014, 105: 203-212. doi: 10.1016/j.jappgeo.2014.03.021
[5] Hustoft S, Mienert J, Bünz S, et al. High-resolution 3D-seismic data indicate focussed fluid migration pathways above polygonal fault systems of the mid-Norwegian margin[J]. Marine Geology, 2007, 245(1-4): 89-106. doi: 10.1016/j.margeo.2007.07.004
[6] L seth H, Wensaas L, Arntsen B, et al. 1 000 m long gas blow-out pipes[C]//63rd Conference & Technical Exhibition, 2001: 524.
[7] Heggland R. Detection of gas migration from a deep source by the use of exploration 3D seismic data[J]. Marine Geology, 1997, 137(1-2): 41-47. doi: 10.1016/S0025-3227(96)00077-1
[8] Gay A, Lopez M, Berndt C, et al. Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin[J]. Marine Geology, 2007, 244(1-4): 68-92. doi: 10.1016/j.margeo.2007.06.003
[9] Løseth H, Gading M, Wensaas L. Hydrocarbon leakage interpreted on seismic data[J]. Marine and Petroleum Geology, 2009, 26(7): 1304-1319. doi: 10.1016/j.marpetgeo.2008.09.008
[10] Kang N K, Yoo D G, Yi B Y, et al. Distribution and origin of seismic chimneys associated with gas hydrate using 2D multi-channel seismic reflection and well log data in the Ulleung Basin, East Sea[J]. Quaternary International, 2015. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3cc88c453e80c545f4a8a1d8952a903d
[11] Sun Y, Wu S, Dong D, et al. Gas hydrates associated with gas chimneys in fine-grained sediments of the northern South China Sea[J]. Marine Geology, 2012, 311-314: 32-40. doi: 10.1016/j.margeo.2012.04.003
[12] Sun Q, Wu S, Cartwright J, et al. Shallow gas and focused fluid flow systems in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geology, 2012, 315-318: 1-14. doi: 10.1016/j.margeo.2012.05.003
[13] Sun Q, Cartwright J, Wu S, et al. 3D seismic interpretation of dissolution pipes in the South China Sea: Genesis by subsurface, fluid induced collapse[J]. Marine Geology, 2013, 337: 171-181. doi: 10.1016/j.margeo.2013.03.002
[14] Bertoni C, Cartwright J A. 3D seismic analysis of circular evaporite dissolution structures, Eastern Mediterranean[J]. Journal of the Geological Society, 2005, 162(6): 909-926. doi: 10.1144/0016-764904-126
[15] 孙启良.南海北部深水盆地流体逸散系统与沉积物变形[D].青岛: 中国科学院研究生院(海洋研究所), 2011.
[16] L seth H, Wensaas L, Arntsen B, et al. 1 000 m long gas blow-out pipes[J]. Marine and Petroleum Geology, 2011, 28(5): 1047-1060. doi: 10.1016/j.marpetgeo.2010.10.001
[17] Berndt C, Bünz S, Mienert J M. Polygonal fault systems on the mid-Norwegian margin: a long-term source for fluid flow[J]. Geological Society, London, Special Publications, 2003, 216: 283-290. doi: 10.1144/GSL.SP.2003.216.01.18
[18] Gorman A R, Holbrook W S, Hornbach M J, et al. Migration of methane gas through the hydrate stability zone in a low-flux hydrate province[J]. Geology, 2002, 30(4): 327-330. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=774444f904bd401463d8d003f4c6ed64
[19] Davies R J, Clarke A L. Methane recycling between hydrate and critically pressured stratigraphic traps, offshore Mauritania[J]. Geology, 2010, 38(1): 963-966. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=514f2717fe94a1e075c8d1aa927fac5a
[20] Hustoft S, Bunz S, Mienert J. Three-dimensional seismic analysis of the morphology and spatial distribution of chimneys beneath the Nyegga pockmark field, offshore mid-Norway[J]. Basin Research, 2010, 22(4): 465-480. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d8e83a81e1940ee5af4a0ba7e1318ae2
[21] Cartwright J, Santamarina C. Seismic characteristics of fluid escape pipes in sedimentary basins: Implications for pipe genesis[J]. Marine and Petroleum Geology, 2015, 65: 126-140. doi: 10.1016/j.marpetgeo.2015.03.023
[22] Moss J L, Cartwright J. 3D seismic expression of km-scale fluid escape pipes from offshore Namibia[J]. Basin Research, 2010, 2010(22): 481-501. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6e819d24160242d8894554fd8b5fda02
[23] Rensbergen P V, Rabaute A, Colpaert A, et al. Fluid migration and fluid seepage in the Connemara Field, Porcupine Basin interpreted from industrial 3D seismic and well data combined with high-resolution site survey data[J]. International Journal of Earth Sciences, 2007, 96(1): 185-197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=12191125b7f5300c471864c1c9a770d2
[24] Karstens J, Berndt C. Seismic chimneys in the Southern Viking Graben-Implications for palaeo fluid migration and overpressure evolution[J]. Earth and Planetary Science Letters, 2015, 412: 88-100. doi: 10.1016/j.epsl.2014.12.017
[25] Sun Z, Wei H, Zhang X, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 95: 37-53. doi: 10.1016/j.dsr.2014.10.005
[26] Netzeband G L, Krabbenhoeft A, Zillmer M, et al. The structures beneath submarine methane seeps: Seismic evidence from Opouawe Bank, Hikurangi Margin, New Zealand[J]. Marine Geology, 2010, 272(1-4): 59-70. doi: 10.1016/j.margeo.2009.07.005
[27] Moss J L, Cartwright J. The spatial and temporal distribution of pipe formation, offshore Namibia[J]. Marine and Petroleum Geology, 2010, 27(6): 1216-1234. doi: 10.1016/j.marpetgeo.2009.12.013
[28] Van Rensbergen P, Rabaute A, Colpaert A, et al. Fluid migration and fluid seepage in the Connemara Field, Porcupine Basin interpreted from industrial 3D seismic and well data combined with high-resolution site survey data[J]. International Journal of Earth Sciences, 2007, 96(1): 185-197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=12191125b7f5300c471864c1c9a770d2
[29] Plaza-Faverola A, Bünz S, Mienert J. Repeated fluid expulsion through sub-seabed chimneys offshore Norway in response to glacial cycles[J]. Earth and Planetary Science Letters, 2011, 305(3-4): 297-308. doi: 10.1016/j.epsl.2011.03.001
[30] Kopf A J. Significance of mud volcanism[J]. Reviews of Geophysics, 2002, 40(2): 2-1-2-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2000RG000093
[31] 何永垚, 王英民, 许翠霞, 等.珠江口盆地深水区白云凹陷气烟囱特征及成藏模式[J].海相油气地质, 2012(3): 62-66. doi: 10.3969/j.issn.1672-9854.2012.03.009 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz201203009
[32] Chu H, Sun Y, Qin K, et al. Application of small-scale array high-resolution multi-channel seismic to gas hydrates exploration (in chinese)[J]. Marine Geology Frontiers, 2015, 31(6): 50-54. http://en.cnki.com.cn/Article_en/CJFDTotal-HYDT201506008.htm
[33] Cathles L M, Su Z, Chen D. The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration[J]. Marine and Petroleum Geology, 2010, 27(1): 82-91. doi: 10.1016/j.marpetgeo.2009.09.010
[34] Dondurur D, Cifci G, Drahor M G, et al. Acoustic evidence of shallow gas accumulations and active pockmarks in the zmir Gulf, Aegean sea[J]. Marine and Petroleum Geology, 2011, 28(8): 1505-1516. doi: 10.1016/j.marpetgeo.2011.05.001
[35] Andresen K J, Huuse M. 'Bulls-eye' pockmarks and polygonal faulting in the Lower Congo Basin: Relative timing and implications for fluid expulsion during shallow burial[J]. Marine Geology, 2011, 279(1-4): 111-127. doi: 10.1016/j.margeo.2010.10.016
[36] Hansen J P V, Cartwright J A, Huuse M, et al. 3D seismic expression of fluid migration and mud remobilization on the Gjallar Ridge, offshore mid-Norway[J]. Basin Research, 2005, 17(1): 123-139. doi: 10.1111/j.1365-2117.2005.00257.x
[37] Davies R J, Mathias S A, Moss J, et al. Hydraulic fractures: How far can they go?[J]. Marine and Petroleum Geology, 2012, 37(1): 1-6. doi: 10.1016/j.marpetgeo.2012.04.001
[38] 孙启良, 吴时国, 陈端新, 等.南海北部深水盆地流体活动系统及其成藏意义[J].地球物理学报, 2014, 57(12): 4052-4062. doi: 10.6038/cjg20141217
[39] Harrington J F, Noy D J, Horseman S T, et al. Laboratory Study of Gas and Water Flow in the Nordland Shale, Sleipner, North Sea[J]. AAPG Studies in Geology, 2009, 59:521-543. https://cn.bing.com/academic/profile?id=55720a5d5998aaf438e2d3223e0ca932&encoded=0&v=paper_preview&mkt=zh-cn
[40] Nermoen A, Galland O, Jettestuen E, et al. Experimental and analytic modeling of piercement structures[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B10): B10202. doi: 10.1029/2010JB007583
-