台湾弧前盆地构造反转的数值模拟

张立升, 闫义, 单业华, 陈文煌. 台湾弧前盆地构造反转的数值模拟[J]. 海洋地质前沿, 2017, 33(6): 24-33. doi: 10.16028/j.1009-2722.2017.06004
引用本文: 张立升, 闫义, 单业华, 陈文煌. 台湾弧前盆地构造反转的数值模拟[J]. 海洋地质前沿, 2017, 33(6): 24-33. doi: 10.16028/j.1009-2722.2017.06004
ZHANG Lisheng, YAN Yi, SHAN Yehua, CHCHEN Wenhuang. NUMERICAL SIMULATION OF THRUST STRUCTURAL INVERSION FOR TAIWAN FORE-ARC BASIN[J]. Marine Geology Frontiers, 2017, 33(6): 24-33. doi: 10.16028/j.1009-2722.2017.06004
Citation: ZHANG Lisheng, YAN Yi, SHAN Yehua, CHCHEN Wenhuang. NUMERICAL SIMULATION OF THRUST STRUCTURAL INVERSION FOR TAIWAN FORE-ARC BASIN[J]. Marine Geology Frontiers, 2017, 33(6): 24-33. doi: 10.16028/j.1009-2722.2017.06004

台湾弧前盆地构造反转的数值模拟

  • 基金项目:
    国家自然科学基金“南海扩张过程及海陆变迁:菲律宾巴拉望-泯都洛陆块地层沉积记录”(41476036)
详细信息
    作者简介: 张立升(1992-),男,在读硕士,主要从事数值模拟方面的研究工作. E-mail: arthursheng@163.com
    通讯作者: 闫义(1973-)男,研究员,主要从事边缘海构造与盆地演化方面的研究工作. E-mail: yanyi@gig.ac.cn
  • 中图分类号: TE121.2

NUMERICAL SIMULATION OF THRUST STRUCTURAL INVERSION FOR TAIWAN FORE-ARC BASIN

More Information
  • 台湾造山带是世界上最年轻的活跃的造山带之一,位于欧亚板块和菲律宾海板块的交界处,具有独特的地质环境。海岸山脉位于台湾岛的最东侧,由残留的弧前盆地和火山岛弧组成,前者为北吕宋海槽弧前盆地经两期强烈的挤压剪切构造演化而来。利用FLAC6.0软件模拟了台湾弧前盆地逆冲构造反转的演化过程。通过模拟结果分析发现,台湾弧前盆地中逆冲构造的反转是由东向西逐渐发育而来,由局部向西倾斜的次级褶皱构造最终演化为整体向西的逆冲构造。地层厚度和岛弧基底的坡角对于褶皱的形成演化方式都起到了明显的控制作用。

  • 加载中
  • 图 1  (A) 台湾海域构造图(据文献[11]改编); (B)海岸山脉地质图(据文献[12]改编); (C) AA’构造剖面图(据文献[9]改编,α:连续单元;β:破坏单元;γ:分割单元;δ:混杂岩)

    Figure 1. 

    图 2  乐合弧前盆地简易岩性柱状图(据文献[19]改编)

    Figure 2. 

    图 3  台湾弧前盆地的地震反射剖面(据文献[35]改编)

    Figure 3. 

    图 4  台湾弧前盆地逆冲构造的模型演化

    Figure 4. 

    图 5  有限剪切增量变化

    Figure 5. 

    图 6  不同坡角的模型演化((A)坡角为0°,(B)坡角为3°)

    Figure 6. 

    图 7  不同坡角的模型演化((A)坡角为5°;(B)坡角为10°;地层岩性同图 5)

    Figure 7. 

    图 8  台湾弧前盆地的构造演化模型(据文献[12]改编)

    Figure 8. 

    图 9  北吕宋海槽北部南北向构造剖面(据文献[41]改编)

    Figure 9. 

    表 1  模型中的岩性分层和岩石力学参数

    Table 1.  Layers and their assigned mechanical properties of the model

    序号 主要岩性 岩石力学参数
    密度/(kg/m3) 体积模量/GPa 剪切模量/GPa 黏聚力/mPa 抗拉强度/mPa 内摩擦角/(°) 膨胀角/(°)
    1 泥岩 2 560 6 9 3 3.8 23 2
    2 砂岩 2 650 8 16 10 4.2 3 2
    3 泥岩 2 560 6 9 3 3.8 23 2
    4 砾质泥岩 2 580 15 15 1 4 10 2
    5 安山岩 2 620 60 35 25 15 45 2
    下载: 导出CSV

    表 2  模型中滑脱带的岩石力学参数

    Table 2.  Mechanical properties of the decollement zones in the model

    滑脱带 法向刚度Kn/(GPa/m) 切向刚度Ks/(GPa/m) 摩擦角/(°) 黏聚力/mPa 膨胀角/(°)
    1 0.05 0.01 6 1 0
    下载: 导出CSV
  • [1]

    Dickinson W R,Seely D R. Structure and stratigraphy of forearc regions [J]. AAPG Bulletin,1979,63(1): 2-31. doi: 10.1002/jps.2600600602

    [2]

    Dickinson W R. Forearc basins[M]//Busby C J,Ingersoll R V. Tectonics of Sedimentary Basins. Cambridge: Blackwell Scientific,1995:221-261.

    [3]

    张传恒,张世红. 弧前盆地研究进展综述[J]. 地质科技情报,1998,17(4): 1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800069720

    [4]

    Cavazza W,Barone M. Large-scale sedimentary recycling of tectonic mélange in a forearc setting: The Ionian basin (Oligocene-Quaternary,southern Italy) [J]. Geological Society of America Bulletin,2010,122(11/12): 1932-1949. doi: 10.1130/B30177.1

    [5]

    Kelsey H M,Sherrod B L,Blakely R J,et al. Holocene faulting in the Bellingham forearc basin: Upper-plate deformation at the northern end of the Cascadia subduction zone [J]. Journal of Geophysical Research (B: Solid Earth),2012,117( B3): 1-26. doi: 10.1029/2011JB008816

    [6]

    Paquet F,Proust J N,Barnes P M,et al. Controls on active forearc basin stratigraphy and sediment fluxes: The Pleistocene of Hawke Bay,New Zealand [J]. Geological Society of America Bulletin,2011,123(5/6): 1074-1096. doi: 10.1130/B30243.1

    [7]

    Williams T A,Graham S A. Controls on forearc basin architecture from seismic and sequence stratigraphy of the Upper Cretaceous Great Valley Group,central Sacramento Basin,California [J]. International Geology Review,2013,55(16): 2030-2059. doi: 10.1080/00206814.2013.817520

    [8]

    Chang C P,Angelier J,Huang C Y. Origin and evolution of a mélange: the active plate boundary and suture zone of the Longitudinal Valley,Taiwan [J]. Tectonophysics,2000,325(1): 43-62. doi: 10.1016/S0040-1951(00)00130-X

    [9]

    Chang C P,AngelierJ,Huang C Y,et al. Structural evolution and significance of a mélange in a collision belt: theLichi Mélange and the Taiwan arc-continent collision [J]. Geological Magazine,2001,138(6): 633-651. doi: 10.1017/S0016756801005970

    [10]

    Huang C Y,Yuan P B,Lin C W,et al. Geodynamic processes of Taiwan arc-continent collision and comparison with analogs in Timor,Papua New Guinea,Urals and Corsica [J]. Tectonophysics,2000,325(1): 1-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9571dd0adadcd87ab3e9aa3d917785ae

    [11]

    Huang C Y,Yuan P B,Tsao S J. Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis [J]. Geological Society of America Bulletin,2006,118(3/4): 274-288. doi: 10.1130/B25527.1

    [12]

    Huang C Y,Chien C W,Yao B,et al. The Lichi Mélange: A collision mélange formation along early arcwardbackthrusts during forearc basin closure,Taiwan arc-continent collision [J]. Geological Society of America Special Paper,2008,436: 127-154. doi: 10.1130/0091-7613(1999)027<0649:POFAAC>2.3.CO;2

    [13]

    Bowin C,Lu R S.,Lee C S,et al. Plate convergence and accretion in Taiwan-Luzon region [J]. American Association of Petroleum Geologists Bulletin,1978,62(9): 1645-1672. doi: 10.1007/BF02634580

    [14]

    Taylor B,Hayes D E. Origin and history of the South China Sea basin [M]//Hayes D E. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. AGU Geophys. Monogr. Ser. 27,Washington D C,1983,27:23-56.

    [15]

    Huang C Y,Shyu C T,Lin S B,et al. Marine geology in the arc-continent collision zone off southeastern Taiwan: Implications for late Neogene evolution of the Coastal Range [J]. Marine Geology,1992,107(3): 183-212. doi: 10.1016/0025-3227(92)90167-G

    [16]

    Huang C Y,Yuan P B,Song S R,et al. Tectonics of short-lived intra-arc basins in the arc-continent collision terrane of the Coastal Range,eastern Taiwan [J] . Tectonics,1995,14(1): 19-38. doi: 10.1029/94TC02452

    [17]

    Hsu T L. The Lichi Mélange in the Coastal Range framework [J]. Bulletin of the Geological Survey of Taiwan,1976,25: 87-95. https://www.researchgate.net/publication/292025064_The_Lichi_Melange_in_the_Coastal_Range_framework

    [18]

    耿 威. 台湾海岸山脉岩石地球化学特征及其构造意义 [D]. 青岛:中科院海洋研究所,2013.

    [19]

    陈文煌.海岸山脉中南段弧前盆地地层研究:台湾弧陆碰撞记录及其对南海深水古海洋的控制 [D]. 广州:中科院广州地球化学研究所,2015.

    [20]

    徐铁良. 台湾东部海岸山脉地质[J]. 台湾省地质调查所汇刊,1956,8:39-63.

    [21]

    王 源,陈文山. 海岸山脉地质图,十万分之一[M]. 台北:台湾省地质调查所,1993.

    [22]

    Barrier E,Angelier J. Active collision in eastern Taiwan: The Coastal Range [J]. Tectonophysics,1986,125(1-3): 39-72. doi: 10.1016/0040-1951(86)90006-5

    [23]

    Cundall P A,Board M. A microcomputer program for modelling large-strain plasticity problem[C]//Swododa C. Numerical Methods in Geomechanics,Proceedings 6th International Conference on Numerical Methods in Geomechanics,11-15 April 1988,Innsbruck,Austria. Volumes 1-3,1988.

    [24]

    Cundall P A,Lemos J V. Numerical simulation of fault instabilities with the continuoudly-yielding jiont model [C]//Preoceedings of the 2nd International Symposium on Rockburst and Seismicity in Mines. Rotterdam: Balkema,1990: 147-152.

    [25]

    Mckinnon S D,de la Barra I. Frature initiation,growth and effect on stressw field: A numerical investigation [J]. Journal of Structural Geology,1998,20(12): 1673-1689. doi: 10.1016/S0191-8141(98)00080-7

    [26]

    Zhang Y H,Mancktelow N S,Hobbs B E,et al. Numerical modelling of single-layer folding: Clarification of an issue regarding the possible effect of computer codes and the influence of initial irregularities. Journal of Structural Geology,2000,22(10): 1511-1522. doi: 10.1016/S0191-8141(00)00063-8

    [27]

    Burov E,Toussaint G. Surface processes and tectonics: Forcing of continental subduction and deep processes[J]. Global and Planetary Change,2007,58(58): 141-164. doi: 10.1016/j.gloplacha.2007.02.009

    [28]

    Zhang Y,Scheibner E,Hobbs B E,et al. Lithospheric structure in Southeast Australia: a model based on geoid and mechanical analyses[M]//Structure and Evolution of the Australian Continent. Published by the American Geophysical Union,1998:89-108.Doi: 10.1002/9781118670095.ch7

    [29]

    Petit C,Deverchere J,Calais E,et al. Deep structure and mechanical behavior of the lithosphere in the Hangai-Hovsgol region,Mongolia: new constraints from gravity modeling [J]. Earth & Planetary Science Letters,2002,197(3):133-149. doi: 10.1016/S0012-821X(02)00470-3

    [30]

    Wang J Y,Zhang F,Fan W M,et al. Numerical modeling of the formation of Indo-Sinianperaluminousgranitoids in Hunan Province: Basaltic underplating versus tectonic thickening[J]. Science in China,2002,45(11):1042-1056. doi: 10.1007/BF02911241

    [31]

    Lin G,Zhang Y,Guo F,et al.Numerical modeling of lithosphere evolution in the North China Block: Thermal versus tectonic thinning [J]. Journal of Geodynamics,2005,40(1): 92-103. doi: 10.1016/j.jog.2005.07.011

    [32]

    Liu L M,Peng S L. Prediction of hidden ore bodies by synthesis of geological,geophysical and geochemical information based on dynamic model in Fenghuangshan ore field,Tongling district,China [J]. Journal of Geochemical Exploration,2004,81(1-3): 81-89. doi: 10.1016/j.gexplo.2003.08.004

    [33]

    Ju M H,Yang J W,Dai T. Numerical simulation of tectonic deformation-driven fluid flow: Implications for ore genesis in the Dachang district,Guangxi,China [J]. Journal of Geochemical Exploration,2010,106(1): 133-136. doi: 10.1016/j.gexplo.2008.11.024

    [34]

    Zhang Y,Roberts P A, Murphy B. Understanding regional structural controls on mineralization at the century deposit: A numerical modeling approach [J]. Journal of Geochemical Exploration,2010,106(1): 244-250. Doi: 10.1016/j.gexplo.2009.09.004

    [35]

    Chi W C,Reed D L,Moore G,et al. Tectonic wedging along the rear of the offshore Taiwan accretionary prism [J]. Tectonophysics,2003,374(3): 199-217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e337fd17301e5fbea7b5da549a37399b

    [36]

    陈俶季,蔡瑞兴,李瑞琳. 实验方法推估台湾地区岩石变形模量研究[J]. 四川大学学报:工程科学版,2004,36(3): 9-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scdxxb-gckx200403002

    [37]

    Itasca Consulting Group. FLAC Version 7.0-Theory and Background[M]. Itasca Consulting Group,Inc,Minneapolis,Minnesota,USA. 2011.

    [38]

    Malavieille J,Trullenque G.Consequences of continental subduction on forearc basin and accretionary[J]. Tectonophysic,2009,446(3): 377-394. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bb06c1de51c465b1e248a04121f5dd64

    [39]

    Currie J B,Patnode H W,Trump R P. Development of Folds in Sedimentary Strata [J]. Geological Society of America Bulletin,1962,73(6): 655-673. doi: 10.1130/0016-7606(1962)73[655:DOFISS]2.0.CO;2

    [40]

    Mitra S. Structural models of faulted detachment fold[J]. AAPG Bulletin,2002,86(9): 1673-1694. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6c2e2ef24b864d25ddf78221885631d1

    [41]

    Hirtzel J, Chi W C,Reed D,et al. Destruction of Luzon forearc basin from subduction to Taiwan arc-continent collision[J]. Tectonophysic,2009,479(1/2): 43-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1760e7980ee21a146684a9a5579f275b

  • 加载中

(9)

(2)

计量
  • 文章访问数:  832
  • PDF下载数:  64
  • 施引文献:  0
出版历程
收稿日期:  2017-02-17
刊出日期:  2017-06-28

目录