CONTROLLING FACTORS ON DISTRIBUTION PATTERN OF SANDY BARS IN MEMBER D3 OF BZ34 AREA AND THEIR QUANTITATIVE PREDICTION
-
摘要:
黄河口凹陷渤中34地区东三段发育滨浅湖砂质滩坝,由于其储层薄、埋藏深,储层精细刻画难度大。以渤中34地区B油田为例,分析得到东三段薄层滩坝砂发育范围受控于古地形及其相关的水动力作用。在古地形的控制之下,不同的水动力背景下滩坝砂的发育可以进一步划分远岸坝、近岸坝、沿岸坝。其中古地形高部位发育宽缓的低洼区,在平均低潮线与高潮线之间,最有利于形成近岸坝是B油田滩坝发育的主要类型。以楔状模型为基础,正演出东三段储层振幅值的大小与砂体厚度存在正相关性,以此可以建立一种半定量计算模型。研究表明,基于滩坝主控因素约束下的地质模式与地震振幅属性共同预测对薄层滩坝砂体开发具有重要的指导意义。
Abstract:Sandy bars are well developed in the near-shore area of the Huanghekou Sag for the Member D3 of BZ34 area. It is hard to get detailed description data of the reservoirs for their thin thickness and large burial depth. Through the study of the B Oilfield of BZ34 area, it is revealed that the development of thin sandy bars mainly depends upon the paleotopographic and paleo-hydrodynamic regimes. The sandy bar can usually be divided into three main types: far shore sandy bar, nearshore sandy bar and alongshore sandy bar, and the Member D3 of BZ34 area is dominated by the nearshore type between the average low tide and high tide lines. Upon the wedge-shape model, a positive linear correlation is found between the seismic wave amplitude value and the thickness of the sand bars. As the result, thickness can be semi-quantitatively predicted. The results from seismic wave amplitude is similar with those from paleotopographic study, and the two approaches could supplement each other in quantitative prediction of thicker sandy bars.
-
Key words:
- thick sand /
- sandy bar /
- paleotopography /
- seismic wave amplitude /
- Huanghekou Sag
-
-
表 1 B油田东三段不同成因滩坝类型及沉积特征
Table 1. The depositional characteristics of sandy bars of different genetic types in B Oilfield
成因类型 沉积背景 沉积特征 水动力环境 水带分布 相对水深/m 地层倾角/(°) 岩性剖面(典型井) 厚度分布/m 储层物性 远岸坝 浪基面平均低潮线 破浪线 18~40 1~2 2~5 较好——好 近岸坝 平均低潮线平均高潮线 碎浪线 10~18 0~1 4~8 好 沿岸坝 平均高潮线洪水面 冲浪带 0~10 1~3 1~2 差——较好 表 2 B油田东三段滩坝相储层预测及误差分析
Table 2. Thickness prediction and accuracy analysis for member D3 of B Oilfield
井号 物探 地质 实钻/m 误差/% 振幅值 预测厚度/m 成因类型 预测厚度/m A24 0.194 7 3.0 近岸坝 4~8 4.7 0.36 A29 0.681 0 5.9 近岸坝 4~8 6.5 0.09 A31 0.402 9 3.8 沿岸坝 1~2 1.9 -1.00 -
[1] 李国斌, 姜在兴, 王升兰, 等.薄互层滩坝砂体的定量预测——以东营凹陷古近系沙四上亚段(Es4上)为例[J].中国地质, 2010, 37(6):1559-1711. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201006012
[2] 王永诗, 刘惠民, 高永进, 等.断陷湖盆滩坝砂体成因与成藏:以东营凹陷沙四上亚段为例[J].地学前缘, 2012, 19(1): 100-107. http://www.cqvip.com/QK/98600X/201201/40825984.html
[3] 傅强, 付晓伟, 夏庆龙, 等, 黄河口凹陷古近系东营组沉积层序格架与油气聚集[J].中国海上油气, 2010, 22(5):290-296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201005002
[4] 王根照, 胡望水.黄河口凹陷北半环的构造样式及构造演化[J].石油天然气学报:江汉石油学院学报, 2008, 30(3):166-169. http://www.cnki.com.cn/Article/CJFDTotal-JHSX200803045.htm
[5] 蔡东升, 罗毓晖, 武文来, 等.渤海浅层构造变形特征、成因机理与渤中坳陷及其周围油气富集的关系[J].中国海上油气(地质), 2001, 15(1):35-43. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-dz200101007
[6] 李建平, 辛仁臣, 向淑敏, 等.渤海湾盆地黄河口凹陷古近系东营组三段沉积特征[J].古地理学报, 2008, 10(4):363-371. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb200804004
[7] 朱筱敏, 信荃麟, 张晋仁.断陷湖盆滩坝储集体沉积特征及沉积模式[J].沉积学报, 1994, 12(2):20-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400005184
[8] 王升兰, 姜在兴, 刘晖.博兴洼陷风暴-滩坝沉积特征及模式[J].断块油气田, 2009, 16(4):37-40. http://www.cqvip.com/QK/90020X/20094/30970005.html
[9] 凌云研究组.应用振幅的调谐作用探测地层厚度小于1/4波长地质目标[J].石油地球物理勘探, 2003, 38(3):268-274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydqwlkt200303011
[10] 汪恩华, 贺振华, 李庆忠.薄储层厚度计算新方法探索[J].物探化探计算技术, 2001, 23(1):22-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wthtjsjs200101005
[11] 王开燕, 徐清彦, 张桂芳, 等.地震属性分析技术综述[J].地球物理学进展, 2013, 28(2):815-823. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201302031
[12] Bahorich M, Motsch A, Laughlin K. Amplitude responses image reservoir[J]. Harts E & P, 2001, 23(1): 59-62. http://www.researchgate.net/publication/295772261_Amplitude_responses_image_reservoir
[13] 李国发, 岳英, 熊金良, 等.基于三维模型的薄互层振幅属性实验研究[J].石油地球物理勘探, 2011, 46(1):115-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydqwlkt201101021
-