-
摘要:
为弄清天然气水合物油气系统模拟的原理和实现过程及应用,系统分析了水合物油气系统发展历程和技术特色,总结了该技术在墨西哥湾、水合物脊、阿拉斯加北坡及中国天然气水合物研究中的应用。研究认为:天然气水合物油气系统模拟是在研究类似含油气系统中的生烃、排烃、运移、聚集和逸散模拟基础上,对地质模型网格和地质时代进行细化设置,达到对不同地质时期水合物的分布、热成因/生物成因甲烷气的运移、稳定带内水合物形成时期和资源量进行模拟的目的。系统的模拟可以证实含气流体的运移是天然气水合物聚集成藏的重要控制因素,可以预测天然气水合物稳定带的空间分布、地质演化,热成因气和生物成因气生成、运移、聚集并形成天然气水合物的过程,还可以定量计算水合物资源量。目前,中国对于该技术的应用还处于起步阶段,应该深入学习国外成功经验,大力推广,以提高中国天然气水合物理论研究及勘探开发水平。
Abstract:In order to further investigate the principles and technology for simulation modeling of gas hydrate petroleum system, a thorough review is made in this paper on the current technical development in the system, in addition to a summarization of some typical cases, such as the Gulf of Mexico, the north slope of Alaska Hydrate Ridge and the natural gas hydrate discoveries in China. The current gas hydrate petroleum system was building upon the model of traditional petroleum system, which includes the generation, pulsation, migration, accumulation and dissemination of petroleum in 3D geological models in different ages. Facts show that the model could also be used for simulation of gas hydrate distribution in different geological periods, migration of thermogenic/biogenic methane, hydrate forming time and resource potential in the stable zone. The result of simulation confirms in general that the migration of gas bearing fluid is an important controlling factor for gas hydrate accumulation. The simulation system could be used to predict the spatial distribution and geological evolution of the gas hydrate stable zone, thermogenic gas and biogenic gas generation, migration and accumulation during the formation of gas hydrate, and quantitative simulation of hydrate resources. Currently, the research and application of this technology is still limited in China, therefore, we should improve the theoretical research as well as exploration and development of gas hydrate in China based on the experience of previous studies.
-
-
图 2 墨西哥湾天然气水合物油气系统3D模拟示意图(据文献[22])
Figure 2.
图 3 水合物脊南部天然气水合物油气系统3D模拟示意图(据文献[36])
Figure 3.
图 4 阿拉斯加天然气水合物油气系统模拟结果示意图(据文献[47])
Figure 4.
表 1 国外天然气水合物油气系统3D模拟相关参数
Table 1. Parameters of 3-D numerical modeling of methane hydrate accumulations using PetroMod abroad
地区 区域范围/km2 空间分辨率/(m×m) 水深范围/m或海底以下深度/mbsf $\frac{{{\text{热流}}/\left( {{\rm{mW/}}{{\rm{m}}^{\rm{2}}}} \right)}}{{{\text{海底温度}}^\circ {\rm{C}}}}$ 地层/个 烃源层/个 运移通道 其他 参考文献 墨西哥湾Green峡谷 462 1 500~3 500 40 3 断层和盐楔 研究区沉积速率高,盐构造活跃作用,烃源岩高成熟度,流体通量高 [19] 水合物脊南部 1.018 5 5×5 1 500 mbsf $\frac{{65}}{4}$ 11 断层 设置层A为高渗透率的砂岩;同时模拟热成因和微生物成因甲烷的生成、运移、聚集 [36] 阿拉斯加北坡 275 000 1 000×1 000 冻土带 根据实测样品校正 43 3 断层 考虑剥蚀、沉积表面水界面温度、古水深等一系列重要参数,模拟结果反复校正而来 [47] -
[1] Kvenvolden K A. Gas hydrates—geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2): 173-187. http://onlinelibrary.wiley.com/doi/10.1029/93rg00268/pdf
[2] 苏新.国外海洋气水合物研究的一些新进展[J].地学前缘, 2000, 7(3):257-265. doi: 10.3321/j.issn:1005-2321.2000.03.024
[3] 宋海斌, 樊栓狮, 耿建华, 等.天然气水合物——封存在海底的潜在能源[J].海洋世界, 2007(3):30-34. http://www.cnki.com.cn/Article/CJFDTotal-HYSJ200703011.htm
[4] 陈多福, 徐文新, 赵振华.天然气水合物的晶体结构及水合系数和比重[J].矿物学报, 2001, 21(2):159-164. doi: 10.3321/j.issn:1000-4734.2001.02.008
[5] 王淑红, 宋海斌, 颜文.天然气水合物的环境效应[J].矿物岩石地球化学通报, 2004, 23(2):160-165. doi: 10.3969/j.issn.1007-2802.2004.02.014
[6] Xu W, Ruppel C. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B3): 5081-5095. doi: 10.1029/1998JB900092
[7] Bünz S, Mienert J, Berndt C. Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin[J]. Earth and Planetary Science Letters, 2003, 209(3): 291-307. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c35ef3c961cf98c5a7f440b939a8e1c5
[8] Milkov A V, Claypool G E, Lee Y J, et al. Gas hydrate systems at Hydrate Ridge offshore Oregon inferred from molecular and isotopic properties of hydrate-bound and void gases[J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 1007-1026. doi: 10.1016/j.gca.2004.08.021
[9] Collett T S. Gas Hydrate Petroleum Systems in Marine and Arctic Permafrost Environments[J]. Gcssepm Proceedings, 2009: 6-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0213166295
[10] 卢振权, 吴能友, 陈建文, 等.试论天然气水合物成藏系统[J].现代地质, 2008, 22(3): 363-375. doi: 10.3969/j.issn.1000-8527.2008.03.004
[11] 吴能友, 梁金强, 王宏斌, 等.海洋天然气水合物成藏系统研究进展[J].现代地质, 2008, 22(3): 356-362. doi: 10.3969/j.issn.1000-8527.2008.03.003
[12] 何家雄, 卢振权, 苏丕波, 等.南海北部天然气水合物气源系统与成藏模式[J].西南石油大学学报:自然科学版, 2016, 38(6):8-24. http://d.wanfangdata.com.cn/Periodical/xnsyxyxb201606002
[13] 张庆春, 石广仁, 田在艺.盆地模拟技术的发展现状与未来展望[J].石油实验地质, 2001, 23(3): 312-317. doi: 10.3969/j.issn.1001-6112.2001.03.011
[14] Pinero E, Hensen C, Haeckel M, et al. 3-D numerical modelling of methane hydrate accumulations using PetroMod[J]. Marine and Petroleum Geology, 2016, 71: 288-295. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=101e8eca7a7acc4507aadbc03916fefb
[15] Hantschel T, Kauerauf A I. Fundamentals of basin and petroleum systems modeling[M]. Springer Science & Business Media, 2009: 476.
[16] Collett T S, Lee M W, Agena W F, et al. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope[J]. Marine and Petroleum Geology, 2011, 28(2): 279-294. doi: 10.1016/j.marpetgeo.2009.12.001
[17] Boswell R, Collett T S, Frye M, et al. Subsurface gas hydrates in the northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1): 4-30. doi: 10.1016/j.marpetgeo.2011.10.003
[18] Milkov A V, Sassen R. Estimate of gas hydrate resource, northwestern Gulf of Mexico continental slope[J]. Marine Geology, 2001, 179(1): 71-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3be6a743c7ffaf825cf0e08a78012005
[19] Sassen R, Losh S L, Cathles L, et al. Massive vein-filling gas hydrate: relation to ongoing gas migration from the deep subsurface in the Gulf of Mexico[J]. Marine and Petroleum Geology, 2001, 18(5): 551-560. doi: 10.1016/S0264-8172(01)00014-9
[20] Roberts H H, Carney R S. Evidence of episodic fluid, gas, and sediment venting on the northern Gulf of Mexico continental slope[J]. Economic Geology, 1997, 92(7/8): 863-879. http://www.researchgate.net/publication/247864125_Evidence_of_episodic_fluid_gas_and_sediment_venting_on_the_northern_Gulf_of_Mexico_continental_slope
[21] Cathles L M. Hydrocarbon generation, migration, and venting in a portion of the offshore Louisiana Gulf of Mexico basin[J]. The Leading Edge, 2004, 23(8): 760-770. doi: 10.1190/1.1786896
[22] Burwicz E, Reichel T, Piero E, et al. Gas hydrate dynamics at the Green Canyon Site, Gulf of Mexico-recovery prospects based on new 3-D modeling study[C]//Proceedings of the 8th International Conference on Gas Hydrates (ICGH8-2014), 28 July-1 August 2014, Beijing, China, T3-63.
[23] Bohrmann G, Greinert J, Suess E, et al. Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability[J]. Geology, 1998, 26(7): 647-650. doi: 10.1130/0091-7613(1998)026<0647:ACFTCS>2.3.CO;2
[24] Tréhu A M, Bohrmann G, Torres M E, et al. Proceedings of the Ocean Drilling Program, Scientific Results, College Station[J]. Texas (Ocean Drilling Program) 204, 2006: 1-29. http://cn.bing.com/academic/profile?id=e8636f959ef76d3a4c95c913fa8c9fdc&encoded=0&v=paper_preview&mkt=zh-cn
[25] Teichert B, Bohrmann G, Suess E. Chemoherms on Hydrate Ridge-Unique microbially-mediated carbonate build-ups growing into the water column[J].Paleogeography, Paleoclimatology, Palaeoecology, 2005, 227: 67-85. doi: 10.1016/j.palaeo.2005.04.029
[26] Tréhu A M, Long P E, Torres M E, et al. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204[J]. Earth and Planetary Science Letters, 2004, 222(3): 845-862. http://www.sciencedirect.com/science/article/pii/S0012821X04002195
[27] Hornbach M J, Bangs N L, Berndt C. Detecting hydrate and fluid flow from bottom simulating reflector depth anomalies[J]. Geology, 2012, 40(3): 227-230. doi: 10.1130/G32635.1
[28] Piero E, Gràcia E, Martínez-Ruiz F, et al. Gas hydrate disturbance fabrics of southern Hydrate Ridge sediments (ODP Leg 204): Relationship with texture and physical properties[J]. Geo-Marine Letters, 2007, 27(2/4): 279-288. http://link.springer.com/article/10.1007/s00367-007-0077-z
[29] Gràcia E, Martínez-Ruiz F, Piero E, et al. Data report: Grain-size, and bulk and clay mineralogy of sediments from the Summit and flanks of southern Hydrate Ridge, Sites 1244-1250, Ocean Drilling Program Leg 204[C]//TRéhu A M, Bohrmann G, Torres M E, et al. Proceedings of the Ocean Drilling Program Scientific Results 204, College Station, 2006, Texas: 1-19.
[30] Tréhu A M, Flemings P B, Bangs N L, et al. Feeding methane vents and gas hydrate deposits at south Hydrate Ridge[J]. Geophysical Research Letters, 2004, 31(23):345-357. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2004GL021286
[31] Crutchley G J, Berndt C, Geiger S, et al. Drivers of focused fluid flow and methane seepage at south Hydrate Ridge, offshore Oregon, USA[J]. Geology, 2013, 41(5): 551-554. doi: 10.1130/G34057.1
[32] Daigle H, Dugan B. Origin and evolution of fracture‐hosted methane hydrate deposits[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B11). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1029/2010JB007492
[33] Chevallier J, Tréhu A M, Bangs N L, et al. Seismic sequence stratigraphy and tectonic evolution of southern Hydrate Ridge[C]//Tréhu A M, Bohrmann G, Torres M E, et al. Proceedings of the Ocean Drilling Program, Scientific Results, College Station, Texas (Ocean Drilling Program) 204, 2006: 1-29.
[34] Krooss B M, Leythaeuser D, Lillack H. Nitrogen-rich natural gases. Qualitative and quantitative aspects of natural gas accumulation in reservoirs[J]. Erdöl und Kohle, Erdgas, Petrochemie vereinigt mit Brennstoff-Chemie, 1993, 46(7/8): 271-276. http://www.researchgate.net/publication/264739270_Nitrogen-rich_natural_gases_Quantitative_and_quantitative_aspects_of_natural_gas_accumulation_in_reservoirs
[35] Torres M E, Wallmann K, Tréhu A M, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon[J]. Earth and Planetary Science Letters, 2004, 226(1): 225-241. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d28c4151cd446caf1cafc736544408ef
[36] Piero E, Crutchley G, Trehu A. modeling 3D gas hydrate accumulations at southern hydrate ridge: role of faulting in gas migration through the GHSZ[C]//Proceedings of the 8th International Conference on Gas Hydrates (ICGH8-2014), 28 July-1 August 2014, Beijing, China, T2-30.
[37] Hubbard R J, Edrich S P, Rattey R P. Geologic evolution and hydrocarbon habitat of the 'Arctic Alaska microplate[J]. Marine and Petroleum Geology, 1987, 4(1): 2IN19-8IN434. http://www.sciencedirect.com/science/article/pii/0264817287900195
[38] Ehm A, McMahon D. Oil and gas basins map of Alaska[M]. Alaska Department of Natural Resources, Division of Geological & Geophysical Surveys, 1983.
[39] McCrossan R G. The future petroleum provinces of Canada: Their geology and potential. Alberta: Canadian Society of Petroleum Geologists, 1973: 315-386.
[40] Molenaar C M. Depositional history and seismic stratigraphy of Lower Cretaceous rocks, National Petroleum Reserve in Alaska and adjacent areas[R]. US Geological Survey, 1981.
[41] Lorenson T D, Collett T S, Hunter R B. Gas geochemistry of the Mount Elbert gas hydrate stratigraphic test well, Alaska North slope: implications for gas hydrate exploration in the Arctic[J]. Marine and Petroleum Geology, 2011, 28(2): 343-360. doi: 10.1016/j.marpetgeo.2010.02.007
[42] Peters K E, Magoon L B, Bird K J, et al. North Slope, Alaska: Source rock distribution, richness, thermal maturity, and petroleum charge[J]. AAPG Bulletin, 2006, 90(2): 261-292. doi: 10.1306/09210505095
[43] Collett T S. Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, north slope, Alaska[J]. AAPG Bulletin, 1993, 77(5): 793-812. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=WYeVF+p1DB0E8wWyeoMKBBwRXazIC7au9idufUpXJh0=
[44] Lorenson T D, Collett T S. Gas hydrate prospecting using well cuttings and mudgas geochemistry from 35 wells, North Slope, Alaska[R]. U.S. Geological Survey Scientific Investigations Report. 2011-5195, 27.
[45] Schoderbek D, Boswell R. Ignik Sikumi #1, Gas Hydrate test well, successfully installed on the Alaska North Slope[J]. Fire in the Ice, 2013, 11: 1-5. http://cn.bing.com/academic/profile?id=5e39e0ad483c25b38c83b1266f2e4175&encoded=0&v=paper_preview&mkt=zh-cn
[46] Schenk O, Magoon L B, Bird K J, et al. Petroleum system modelling of northern Alaska[C]//Peters K E, Curry D J, Kacewicz M. Basin modelling: New Horizons in Research and Applications. AAPG Hedberg Series, 2012, 4, 317-338.
[47] Piero E, Hensen C, Haeckel M, et al. Gas hydrate accumulations at the Alaska North Sloge: total assessment based on 3D petroleum system modeling[C]//Proceedings of the 8th International Conference on Gas Hydrates (ICGH8-2014), 28 July-1 August 2014, Beijing, China, T2-37.
[48] 安珑雨, 文志刚, 谢云欣, 等.中国永久冻土区天然气水合物研究现状[J].资源环境与工程, 2014, 28(1): 5-9. doi: 10.3969/j.issn.1671-1211.2014.01.003
[49] 卢振权, 祝有海, 张永勤, 等.青海省祁连山冻土区天然气水合物基本地质特征[J].矿床地质, 2010, 29(1):184-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201001017
[50] 苏丕波, 梁金强, 沙志彬, 等.南海北部神狐海域天然气水合物成藏动力学模拟[J].石油学报, 2011, 32(2): 226-233. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201102006
[51] 苏丕波, 乔少华, 付少英, 等.南海北部琼东南盆地天然气水合物成藏数值模拟[J].天然气地球科学, 2014, 25 (7): 1111-1119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201407019
[52] 陈多福, 李绪宣, 夏斌.南海琼东南盆地天然气水合物稳定域分布特征及资源预测[J].地球物理学报, 2004, 47(3):483-489. doi: 10.3321/j.issn:0001-5733.2004.03.018
[53] 梁金强, 王宏斌, 苏新, 等.南海北部陆坡天然气水合物成藏条件及其控制因素[J].天然气工业, 2014, 34(7):128-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201407022
-