ERT在水合物在线监测中的应用:以结融冰过程为例

李彦龙, 孙海亮, 刘昌岭, 邢兰昌, 吴能友, 孟庆国. ERT在水合物在线监测中的应用:以结融冰过程为例[J]. 海洋地质前沿, 2020, 36(3): 65-71. doi: 10.16028/j.1009-2722.2019.026
引用本文: 李彦龙, 孙海亮, 刘昌岭, 邢兰昌, 吴能友, 孟庆国. ERT在水合物在线监测中的应用:以结融冰过程为例[J]. 海洋地质前沿, 2020, 36(3): 65-71. doi: 10.16028/j.1009-2722.2019.026
LI Yanlong, SUN Hailiang, LIU Changling, XING Lanchang, WU Nengyou, MENG Qingguo. Application of ERTto Hydrate Monitoring: TakeIce as Substitute[J]. Marine Geology Frontiers, 2020, 36(3): 65-71. doi: 10.16028/j.1009-2722.2019.026
Citation: LI Yanlong, SUN Hailiang, LIU Changling, XING Lanchang, WU Nengyou, MENG Qingguo. Application of ERTto Hydrate Monitoring: TakeIce as Substitute[J]. Marine Geology Frontiers, 2020, 36(3): 65-71. doi: 10.16028/j.1009-2722.2019.026

ERT在水合物在线监测中的应用:以结融冰过程为例

  • 基金项目:
    国家自然科学基金青年基金(41976074);泰山学者特聘专家项目(ts201712079);国家重点研发计划(2017YFC0307600)
详细信息
    通讯作者: 李彦龙(1989—),男,助理研究员,中国地质调查局第三批杰出地质人才,主要从事海洋天然气水合物开采基础相关的研究.E-mail:ylli@qnlm.ac
  • 中图分类号: P744.4;TE53

Application of ERTto Hydrate Monitoring: TakeIce as Substitute

More Information
  • 电阻率层析成像技术(ERT)作为一种岩心尺度的可视化测试手段,在天然气水合物成藏-开采过程模拟方面具有广阔的应用前景。目前国内专门针对天然气水合物合成-分解过程进行电阻率层析成像观测的报道较少。本文采用自主研发的天然气水合物电阻率层析成像测试系统,以冰的形成和融解过程为例,探讨了电阻率层析成像技术在天然气水合物可视化观测中的可用性。实验结果表明,电阻率层析成像技术能够实时在线监测沉积物体系中冰的形成和溶解过程,以及该过程中冰在沉积物孔隙中的分布规律。结冰-融冰过程中沉积物体系的电导率分布受温度、孔隙连通性、盐度因素影响,排盐效应对电导率不均匀性分布影响明显。研究结果对进一步开展电阻率层析成像技术在天然气水合物探测方面的应用有一定的参考意义。

  • 加载中
  • 图 1  实验装置示意图

    Figure 1. 

    图 2  冰生成过程各时刻电导率图像

    Figure 2. 

    图 3  电导率图像区域划分图

    Figure 3. 

    图 4  不同区域电导率与釜内温度随时间的变化曲线

    Figure 4. 

    图 5  冰分解过程各区域的平均电导率变化曲线

    Figure 5. 

    图 6  冰分解过程各时刻电导率图像

    Figure 6. 

    表 1  实验用沉积物体系的地层因子求取

    Table 1.  The geological factors of the sediment system used in the experiment

    温度/K 3.5%NaCl溶液电阻率/(Ω·m) 饱和3.5%NaCl溶液的沉积物电阻率/(Ω·m) 地层因子
    290.4 0.190 1 1.044 1 5.492 3
    286.2 0.206 7 1.131 1 5.470 2
    282.1 0.227 9 1.250 2 5.484 6
    278.2 0.252 6 1.398 8 5.537 0
    276.9 0.262 1.455 1 5.536 2
    275.2 0.275 6 1.533 9 5.565 5
    274.1 0.284 9 1.582 9 5.555 6
    273.1 0.294 3 1.617 3 5.494 8
    下载: 导出CSV
  • [1]

    刘昌岭, 陈强, 业渝光, 等.多孔介质中甲烷水合物生成的排盐效应及其影响因素[J].石油学报, 2006, 27(5):56-60. http://d.old.wanfangdata.com.cn/Periodical/syxb200605010

    [2]

    Halleck P M, Pearson C, McGuire P L, et al. Natural gas hydrate Deposits: A review of in situ properties [J]. Journal of Physical Chemistry, 1983, 87: 4180-4185. doi: 10.1021/j100244a041

    [3]

    Spangenberg E. Modeling of the influence of gas hydrate content on the electrical properties of porous sediments [J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B4): 6535-6548. doi: 10.1029/2000JB900434

    [4]

    薛花, 杜民, 文鹏飞, 等.南海神狐海域试采区天然气水合物精细速度建模方法[J].海洋地质前沿, 2019, 35(7): 8-17. http://d.old.wanfangdata.com.cn/Periodical/hydzdt201907002

    [5]

    陈玉凤, 周雪冰, 梁德青, 等.沉积物中天然气水合物生成与分解过程的电阻率变化[J].天然气地球科学, 2018, 29(11):1672-1677. doi: 10.11764/j.issn.1672-1926.2018.08.017

    [6]

    王英梅, 吴青柏, 蒲毅彬, 等.温度梯度对粗砂中甲烷水合物形成和分解过程的影响及电阻率响应[J].天然气地球科学, 2012, 23(11):19-25. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201201003

    [7]

    Wang P K, Zhu Y H, Lu Z Q, et al. Gas hydrate in the Qilian Mountain permafrost and its distribution characteristics. Geological Bulletin of China, 2011, 30(12): 1839-1850. http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201112006.htm

    [8]

    梁金强, 张光学, 陆敬安, 等.南海东北部陆坡天然气水合物富集特征及成因模式[J].天然气工业, 2016, 36(10):157-162. doi: 10.3787/j.issn.1000-0976.2016.10.020

    [9]

    吴能友, 黄丽, 胡高伟, 等.海域天然气水合物开采的地质控制因素和科学挑战[J].海洋地质与第四纪地质. 2017, 37(5):1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201705001

    [10]

    杨晓璐, 钟思玲, 万志峰.泥底辟/泥火山流体热效应及其对天然气水合物赋存的影响[J].海洋地质前沿, 2018, 34(7):18-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzdt201807003

    [11]

    赵洪伟, 刁少波, 业渝光, 等.多孔介质中水合物阻抗探测技术[J].海洋地质与第四纪地质, 2005, 25(1):0137-0141. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200501021

    [12]

    李小森, 冯景春, 李刚, 等.电阻率在天然气水合物三维生成及开采过程中的变化特性模拟实验[J].天然气工业, 2013, 33(7):18-23. http://d.old.wanfangdata.com.cn/Periodical/trqgy201307003

    [13]

    Wang H X, Tang L. An image reconstruction algorithm based on total variation with adaptive mesh refinement for ECT. Flow Measurement and Instrumentation, 2007, 18(5/6):262-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1a95c4dda72e54d3b195732f672d631e

    [14]

    张立峰, 王化祥.一种修正的电阻层析成像Landweber迭代算法[J].计量学报, 2016, 37(3): 271-274. doi: 10.3969/j.issn.1000-1158.2016.03.010

    [15]

    王化祥, 朱学明, 张立峰.用于电容层析成像技术的共轭梯度算法[J].天津大学学报, 2005, 38(1):1-4. http://d.old.wanfangdata.com.cn/Periodical/tianjdxxb200501001

    [16]

    Cook A E, Anderson B I, Rasmus J, et al. Electrical anisotropy of gas hydrate-bearing sand reservoirs in the Gulf of Mexico[J]. Marine and Petroleum Geology, 2012, 34(1):72-84. doi: 10.1016/j.marpetgeo.2011.09.003

    [17]

    李彦龙, 孙海亮, 孟庆国, 等.沉积物中天然气水合物生成过程的二维电阻层析成像观测[J].天然气工业, 2019, 39(10): 132-138. doi: 10.3787/j.issn.1000-0976.2019.10.017

    [18]

    Walsh M, Estanga D, Creek J, et al. Laboratory and high-pressure flowloop investigationof gas hydrate formation and distribution using electrical tomography[C]//Proceedings of the 8th International Conference on Gas Hydrates. Beijing, 2014.

    [19]

    Priegnitz M, Spangenberg E, Thale J. Three dimensional monitoring of hydrate formation and dissociation using a cylingdrical electrical resistivity tomography array[C]//Proceedings of the 8th International Conference on Gas Hydrates, Beijing, 2014.

    [20]

    Priegnitz M, Thaler J, Spangenberg E, et al. Spatial resolution of gas hydrate and permeability changes from ERT data in LARS simulating the Mallik gas hydrate production test[C]//European Geosciences Union General Assembly, Austria, 2014.

    [21]

    Pearson C F, Halleck P M, McGuire P L, et al. Natural gas hydrate deposits: a review of in situ properties[J]. Journal of Physical Chemistry, 1983, 87(21): 4180-4185. doi: 10.1021/j100244a041

    [22]

    邢兰昌, 祈雨, 刘昌岭, 等.电声联合探测实验系统测试结冰-融冰动态过程[J].实验室研究与探索, 2018, 37(5): 6-9, 30. http://d.old.wanfangdata.com.cn/Periodical/sysyjyts201805002

    [23]

    赵洁, 孙始财, 孔亚运, 等.天然海沙中水动态结冰与渗透率研究[J].应用化学, 2017, 46(5):0862-0866. http://d.old.wanfangdata.com.cn/Periodical/sxhg201705012

    [24]

    Spangenberg E, Seyberth K, Heeschen K U, et al. A quick look method to assess the dependencies of rock physical sediment properties on the saturation with pore-filling hydrate[J]. Journal of Geophysical Research: Solid Earth, 2018, 123: 5588-5598. doi: 10.1029/2018JB015855

    [25]

    Wang M. Inverse solutions for electrical impedance tomography based on conjugate gradients methods, Measurement Science and Technology, 2002, 13: 101-117. doi: 10.1088/0957-0233/13/1/314

    [26]

    Murai T, Kagawa Y. Electrical impedancecomputed tomography based on a finite element model. IEEE Trans. Biomed. Eng., 1985, 32(3):177-184. https://www.onacademic.com/detail/journal_1000035154342210_9169.html

    [27]

    周锡堂, 樊栓狮, 梁德青.用电导性监测天然气水合物的形成和分解[J].天然气地球科学, 2007, 18(4): 593-595. doi: 10.3969/j.issn.1672-1926.2007.04.023

    [28]

    陈强, 刘昌岭, 业渝光, 等.多孔介质中气体水合物的成核研究[J].石油学报, 2008, 24(3):0345-0349. http://d.old.wanfangdata.com.cn/Periodical/syxb-syjg200803018

  • 加载中

(6)

(1)

计量
  • 文章访问数:  1583
  • PDF下载数:  158
  • 施引文献:  0
出版历程
收稿日期:  2019-01-26
刊出日期:  2020-03-28

目录