APPLICATION OF BROADBAND SEISMIC DATA TO PETROLEUM EXPLORATION IN SAG A OF EAST CHINA SEA BASIN
-
摘要:
东海盆地A凹陷B构造油气勘探中一直存在着中深层沉积体系展布特征不明确和储层甜点发育规律不清晰等基础地质问题。针对这一问题,运用地震精细解释和地质综合分析的方法,利用重处理的高精度宽频地震资料开展了地震沉积学和全频带信息挖掘研究,结合区域地质认识和已钻井地质分析,认识到B构造C段沉积时期发育了东、中、西3条大型曲流河河道带,在中支和西支河道带中发现了3个典型的频率异常发育区,油气检测技术证实是潜在的含气构造,表明B构造C段发育受河道带控制的构造-岩性气藏,为A凹陷B构造中深层油气勘探提供了地质依据,具有重要的勘探实践意义。
Abstract:There are many difficulties in petroleum exploration on the structure B of Sag A in the East China Sea Basin. Many basic geological problems in the middle and deep parts of the field need to be solved, which include the unclear distribution of the sedimentary systems and reservoir sweetness. Combined regional geological survey together with drilling wells, the study of seismic sedimentology and full-band information analysis were carried out based on the broadband seismic data. The results suggest that there were three large meandering river channel systems in the eastern, central and western parts of the structure B respectively during the depositional period of Member C. Three typical frequency anomalous zones were found in the central and western channel systems and the petroleum detecting technology confirmed that they are potential gas-bearing structures. The research shows that the Member C in structure B is a structural-lithologic reservoir controlled by a large meandering river system.
-
-
[1] 连小翠.东海西湖凹陷深层低渗—致密砂岩气成藏的地质条件与模式[J].海洋地质前沿, 2018, 34(2): 23-30. http://hydt.cbpt.cnki.net/WKA/WebPublication/paperDigest.aspx?paperID=54765000-7f2d-4810-9d78-1a97e1d5ed48
[2] 蔡华.东海平湖油气田潮道砂体垂向特征及平面分布[J].海洋地质前沿, 2013, 29(8): 39-44. http://hydt.cbpt.cnki.net/WKA/WebPublication/paperDigest.aspx?paperID=781c8e93-45fd-45ff-8e53-9f671f7e260d
[3] 钟韬, 李键, 曹冰, 等.西湖凹陷花港组储层致密化及其与油气成藏的关系[J].海洋地质前沿, 2018, 34(1): 20-27. http://hydt.cbpt.cnki.net/WKA/WebPublication/paperDigest.aspx?paperID=ff41658c-105d-4bbe-be5b-815d58c1a4c6
[4] 谢玉洪, 李列, 袁全社.海上宽频地震勘探技术在琼东南盆地深水区的应用[J].石油地球物理勘探, 2012, 47(3): 430-435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201202094968
[5] 杜向东.中国海上地震勘探技术新进展[J].石油物探, 2018, 57(3):321-331. doi: 10.3969/j.issn.1000-1441.2018.03.001
[6] 叶云飞, 刘春成, 刘志斌, 等.海上宽频地震反演方法及其在南海深水区的应用[J].中国海上油气, 2018, 30(2): 65-70. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201802008
[7] 仝中飞, 陈宝书, 李松康, 等.三维水平拖缆地震资料宽频处理技术应用研究[C]//中国石油学会2017年物探技术研讨会论文集, 天津: 石油地球物理勘探编辑部, 2017, 704-707.
[8] 赵淑红.时频分析方法及其在地震数据处理中的应用[D].西安: 长安大学, 2006.
[9] 高静怀, 陈文超, 李幼铭, 等.广义S变换与薄互层地震响应分析[J].地球物理学报, 2003, 46(4):526-532. doi: 10.3321/j.issn:0001-5733.2003.04.015
[10] 蔡涵鹏, 贺振华, 李亚林, 等.宽频带地震数据瞬时谱分解及快捷解释方法[J].石油地球物理勘探, 2014, 49(5):932-939. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sydqwlkt201405017
[11] Huang Y P, Geng J H, Zhong G F, et al. Seismic attribute extraction based on HHT and its application in a marine carbonate area[J]. Applied Geophysics, 2011, 8(2): 125-133. doi: 10.1007/s11770-010-0279-z
[12] 曹俊兴, 刘树根, 田仁飞, 等.龙门山前陆盆地深层海相碳酸盐岩储层地震预测研究[J].岩石学报, 2011, 27(8):2423-2434. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201108019
[13] 边立恩.全频带地震信息挖掘与油气识别[D].成都: 成都理工大学, 2009.
[14] Goloshubin G M, Connie V A, Korneev V A, et al. Reservoir imaging using low frequencies of seismic reflections[J]. The Leading Edge, 2006, 25(5): 527-531. doi: 10.1190/1.2202652
[15] 党丹, 李金泉.低频数据体的属性提取在储层预测中的应用[J].海洋地质前沿, 2013, 29(12):65-70. http://hydt.cbpt.cnki.net/WKA/WebPublication/paperDigest.aspx?paperID=4082e403-2ec0-4b00-9c49-82d8dd5ef0bb
[16] Castagna J P, Sun S, Siegfried R W. Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons[J]. The Leading Edge, 2003, 22(2): 120-127. https://www2.lbl.gov/Tech-Transfer/publications/1663pub5.pdf
[17] Taner M T, Koehler F, Sheriff R. Complex seismic trace analysis [J]. Geophysics, 1979, 44(6): 1041-1063. doi: 10.1190/1.1440994
-