东海冲绳海槽泥火山发育区甲烷气体来源研究

李清, 蔡峰, 闫桂京, 孙运宝, 李昂, 骆迪, 王星星, 徐翠玲, 董刚, 尹希杰, 杨贤. 东海冲绳海槽泥火山发育区甲烷气体来源研究[J]. 海洋地质前沿, 2020, 36(9): 79-86. doi: 10.16028/j.1009-2722.2020.062
引用本文: 李清, 蔡峰, 闫桂京, 孙运宝, 李昂, 骆迪, 王星星, 徐翠玲, 董刚, 尹希杰, 杨贤. 东海冲绳海槽泥火山发育区甲烷气体来源研究[J]. 海洋地质前沿, 2020, 36(9): 79-86. doi: 10.16028/j.1009-2722.2020.062
LI Qing, CAI Feng, YAN Guijing, SUN Yunbao, LI Ang, LUO Di, WANG Xingxing, XU Cuiling, DONG Gang, YIN Xijie, YANG Xian. ORIGIN OF PORE WATER METHANE RECOVERED FROM MUD VOLCANOS IN THE OKINAWA TROUGH[J]. Marine Geology Frontiers, 2020, 36(9): 79-86. doi: 10.16028/j.1009-2722.2020.062
Citation: LI Qing, CAI Feng, YAN Guijing, SUN Yunbao, LI Ang, LUO Di, WANG Xingxing, XU Cuiling, DONG Gang, YIN Xijie, YANG Xian. ORIGIN OF PORE WATER METHANE RECOVERED FROM MUD VOLCANOS IN THE OKINAWA TROUGH[J]. Marine Geology Frontiers, 2020, 36(9): 79-86. doi: 10.16028/j.1009-2722.2020.062

东海冲绳海槽泥火山发育区甲烷气体来源研究

  • 基金项目: 国家重点研发计划(2018YFC0310001);国家自然科学基金(41306062);山东省自然科学基金(ZR201807100270);国土资源部天然气水合物重点实验室开放基金(SHW[2014]-DX-03,SHW[2014]-DX-04)
详细信息
    作者简介: 李 清(1984—),男,硕士,高级工程师,主要从事天然气水合物地质与地球化学调查与研究工作. E-mail: qing.li@live.cn
    通讯作者: 蔡 峰(1965—),男,博士,研究员,主要从事油气资源调查、天然气水合物调查与研究工作. E-mail: caifeng0532@163.com
  • 中图分类号: P744;P618.13

ORIGIN OF PORE WATER METHANE RECOVERED FROM MUD VOLCANOS IN THE OKINAWA TROUGH

More Information
  • 高沉积速率、构造活动发育和高热流值3个重要地质条件促使了冲绳海槽广泛发育泥火山、气烟囱等烃类流体渗漏构造,前人对该类泥火山及气烟囱的地球物理特征做过较多的研究,但是鲜有研究从地球化学角度揭示渗漏流体来源及形成机制。本研究通过对东海冲绳海槽中部泥火山发育区2个泥火山站位开展海底钻探取样,获取浅表层60 m沉积物并开展孔隙水烃类浓度、甲烷稳定碳、氢同位素研究。通过分析发现,18-01孔孔隙水顶空烃类比值C1/C2为960.53~1 120.75,甲烷稳定碳同位素(δ13C ${_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}} $ )为−36.07‰~−56.60‰ V-PDB,甲烷稳定氢同位素(δD $ _{{\rm{C}}{{\rm{H}}_{\rm{4}}}}$ )为−163.94‰~−237.81‰ V-SMOW;在18-05孔,孔隙水顶空烃类比值C1/C2为1 064.66~1 546.74,δ13C $_{{\rm{C}}{{\rm{H}}_{\rm{4}}}} $ 为−36.10‰~−62.92‰ V-PDB,δD $_{{\rm{C}}{{\rm{H}}_{\rm{4}}}} $ 为−122.86‰~−282.09‰ V-SMOW。系统分析2个站位甲烷气源均为热解成因或以热解成因为主的混合成因。综合分析2个站位泥火山及气烟囱发育的地质背景以及高通量甲烷渗漏的特征认为,深部地层中有机热解成因甲烷流体是通过断层、气烟囱等运移通道,在流体超压的驱动下渗漏、扩散至浅表层地层中,并在海底形成了泥火山以及羽状流等构造。

  • 加载中
  • 图 1  取样站位及浅地层剖面位置图

    Figure 1. 

    图 2  18-01与18-05孔取样位置、钻探深度及过两钻孔浅地层剖面,可见典型气烟囱为流体运移的通道,以及近海底发育的羽状流

    Figure 2. 

    图 3  18-01与18-05孔孔隙水顶空甲烷浓度、甲烷稳定碳同位素特征

    Figure 3. 

    图 4  孔隙水烃类浓度C1/C2比值与甲烷稳定碳同位素“Bernard”图,以及示踪的烃类气体来源(底图据文献[19]修改)

    Figure 4. 

    图 5  18-01与18-05孔孔隙水甲烷稳定碳、氢同位素特征,以及示踪的烃类气体来源(底图据文献[19]修改)

    Figure 5. 

    表 1  取样站位信息

    Table 1.  Detailed depictions of study sites.

    站位 经度 纬度 水深/m 样长/m
    18-01孔 127°22.34′ 28°46.25′ 1 005 54.30
    18-05孔 127°22.12′ 28°47.16′ 1 100 54.17
    下载: 导出CSV
  • [1]

    何家雄, 万志峰, 张 伟, 等. 南海北部泥底辟/泥火山形成演化与油气及水合物成藏[M]. 北京: 科学出版社, 2019.

    [2]

    Dimitrov L I. Mud volcanoes-the most important pathway for degassing deeply buried sediments[J]. Earth-Science Reviews,2002,59:49-76. doi: 10.1016/S0012-8252(02)00069-7

    [3]

    Seol J,Lee H. Natural gas hydrate as a potential energy resource:From occurrence to production[J]. Korean Journal of Chemical Engineering,2013,30(4):771-786. doi: 10.1007/s11814-013-0033-8

    [4]

    Boswell R,Collett T. The gas hydrates resource pyramid[J]. Fire in the Ice,2006,6(2):5-7.

    [5]

    Yoneda J,Kida M,Konno Y,et al. In situ mechanical properties of shallow gas hydrate deposits in the deep seabed[J]. Geophysical Research Letters,2019,14:459-468.

    [6]

    Pape T,Patriziam G,Sebastian H,et al. Hydrocarbon seepage and its sources at mud volcanoes of the Kumano forearc basin,Nankai Trough subduction zone[J]. Geochemistry Geophysics Geosystems,2014,15:2180-2194. doi: 10.1002/2013GC005057

    [7]

    Brooks J M,Kennicutt II M C,Fay R R,et al. Thermogenic gas hydrates in the Gulf of Mexico[J]. Science,1984,225:409-411. doi: 10.1126/science.225.4660.409

    [8]

    Lein A,Vogt P,Crane K.,et al. Chemical and isotopic evidence for the nature of the fluid in CH4-containing sediments of the Håkon Mosby Mud Volcano[J]. Geo-Marine Letters,1999,19(1):76-83.

    [9]

    Li A,Cai F,Wu N Y,et al. Late Pleistocene shelf-edge delta clinoforms along the rift margin of the northern Okinawa Trough[J]. Geological Journal,2020:1-12.

    [10]

    Liu B,Li S Z,Suo Y,et al. The geological nature and geodynamics of the Okinawa Trough,Western Pacific[J]. Geological Journal,2016,51(S1):416-428.

    [11]

    Li Q,Cai F,Yan G J,et al. Widespread methane seep activities along the western slope of the Okinawa trough,East China Sea[J]. Acta Geologica Sinica,2017,91:1505-1506. doi: 10.1111/1755-6724.13383

    [12]

    Xing J H,Jiang X D,Li D Y. Seismic study of the mud diapir structures in the Okinawa Trough[J]. Geological Journal,2016,51:203-208.

    [13]

    Li D Y,Chen H Y,Xu S J,et al. Stratigraphic sequence and sedimentary systems in the middle-southern continental slope of the East China Sea from seismic reflection data:Exploration prospects of gas hydrate[J]. Journal of Ocean University of China (Oceanic and Coastal Sea Research),2019,18:1-15. doi: 10.1007/s11802-019-3526-1

    [14]

    Xu N,Wu S G,Shi B Q,et al. Gas hydrate associated with mud diapirs in southern Okinawa Trough[J]. Marine and Petroleum Geology,2009,26:1413-1418. doi: 10.1016/j.marpetgeo.2008.10.001

    [15]

    李乃胜. 冲绳海槽断裂构造的研究[J]. 海洋与湖沼,1988,19(4):347-358.

    [16]

    栾锡武,秦蕴珊. 冲绳海槽宫古段西部槽底海底气泉的发现[J]. 科学通报,2005,50(8):802-810. doi: 10.3321/j.issn:0023-074X.2005.08.014

    [17]

    Yin P,Berné S,Vagner P,et al. Mud volcanoes at the shelf margin of the East China Sea[J]. Marine Geology,2003,194(3/4):135-149.

    [18]

    李官保,刘保华,李乃胜. 冲绳海槽地热研究中若干问题的探讨[J]. 海洋通报,2006,25(5):70-76. doi: 10.3969/j.issn.1001-6392.2006.05.011

    [19]

    Whiticar M. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology,1999,161:291-314. doi: 10.1016/S0009-2541(99)00092-3

    [20]

    Borowski W S,Paull C K,Ussler III W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydfate[J]. Geology,1996,24:655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2

    [21]

    Borowski W S,Paull C K,Ussler III W. Global and local variations of interstitial sulfate gradients in deep-water,continental margin sediments:Sensitivity to underlying methane and gas hydrates[J]. Marine Geology,1999,159:131-154. doi: 10.1016/S0025-3227(99)00004-3

    [22]

    Li Q,Cai F,Liang J,et al. Geochemical constraints on the methane seep activity in western slope of the middle Okinawa Trough,the East China Sea[J]. Science China:Earth Sciences,2015,58:986-995.

    [23]

    Matsumoto R. Borowski W S. Gas hydrate estimates from newly determined oxygen isotopic fractionation (αGH-IW) and δ18O anomalies of the interstitial waters: Leg 164, Blake ridge[C]//Proceedings of the Ocean Drilling Program, Scientific Results, 2000, 164: 59-66.

    [24]

    Schoell M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins[J]. Geochimica et Cosmochimica Acta,1980,44:649-661. doi: 10.1016/0016-7037(80)90155-6

    [25]

    Schoell M. Multiple origins of methane in the Earth[J]. Chemical Geology,1988,71:1-10. doi: 10.1016/0009-2541(88)90101-5

    [26]

    Pohlman J W,Kaneko M,Henuer V B,et al. Methane sources and production in the northern Cascadia margin gas hydrate system[J]. Earth and Planetary Science Letters,2009,287:504-512. doi: 10.1016/j.jpgl.2009.08.037

    [27]

    Roger S,Joye S,Stephen T S,et al. Thermogenic gas hydrates and hydrocarbon gases in complex chemosynthetic communities,Gulf of Mexico continental slope[J]. Organic Geochemistry,1999,30:485-497. doi: 10.1016/S0146-6380(99)00050-9

    [28]

    Liu C L,Meng Q G,He X L,et al. Characterization of natural gas hydrate recovered from Pearl River Mouth basin in South China Sea[J]. Marine and Petroleum Geology,2015,61:14-21. doi: 10.1016/j.marpetgeo.2014.11.006

    [29]

    Wilson R M,Macelloni L,Simonetti A,et al. Subsurface methane sources and migration pathways within a gas hydrate mound system,Gulf of Mexico[J]. Geochemistry Geophysics Geosystems,2014,15:89-107. doi: 10.1002/2013GC004888

    [30]

    Snyder G T,Sano Y,Takahata N,et al. Magmatic fluids play a role in the development of active gas chimneys and massive gas hydrates in the Japan Sea[J]. Chemical Geology,2020,535:119462. doi: 10.1016/j.chemgeo.2020.119462

    [31]

    Stolper D A,Lawson M,Davis C L,et al. Formation temperatures of thermogenic and biogenic methane[J]. Science,2014,344(6191):1500-1503. doi: 10.1126/science.1254509

    [32]

    李家彪. 东海区域地质[M]. 北京: 海洋出版社, 2008.

    [33]

    Matsumoto R, Kakuwa Y, Snyder G T, et al. Occurrence and origin of thick deposits of massive gas hydrate, eastern margin of the sea of Japan[C]// 9th International Conference on Gas Hydrates. Denver, Colorado, USA, 2017.

    [34]

    Matsumoto R,Tanahashi M,Kakuwa Y,et al. Recovery of thick deposits of massive gas hydrates from gas chimney structures,eastern margin of Japan Sea Japan Sea shallow gas hydrate project[J]. Fire in the Ice,2017,17:1-6.

    [35]

    Tryon M D,Henry P,Çağatay M N,et al. Pore fluid chemistry of the North Anatolian fault zone in the sea of Marmara:A diversity of sources and processes[J]. Geochemistry Geophysics Geosystems,2010,11:1-22.

    [36]

    Nguyen B T T,Kido M,Okawa N,et al. Compaction of smectite-rich mudstone and its influence on pore pressure in the deepwater Joetsu Basin,Sea of Japan[J]. Marine and Petroleum Geology,2016,78:848-869. doi: 10.1016/j.marpetgeo.2016.07.011

  • 加载中

(5)

(1)

计量
  • 文章访问数:  1705
  • PDF下载数:  121
  • 施引文献:  0
出版历程
收稿日期:  2020-05-28
刊出日期:  2020-09-28

目录