-
摘要:
高沉积速率、构造活动发育和高热流值3个重要地质条件促使了冲绳海槽广泛发育泥火山、气烟囱等烃类流体渗漏构造,前人对该类泥火山及气烟囱的地球物理特征做过较多的研究,但是鲜有研究从地球化学角度揭示渗漏流体来源及形成机制。本研究通过对东海冲绳海槽中部泥火山发育区2个泥火山站位开展海底钻探取样,获取浅表层60 m沉积物并开展孔隙水烃类浓度、甲烷稳定碳、氢同位素研究。通过分析发现,18-01孔孔隙水顶空烃类比值C1/C2为960.53~1 120.75,甲烷稳定碳同位素(δ13C
${_{{\rm{C}}{{\rm{H}}_{\rm{4}}}}} $ $ _{{\rm{C}}{{\rm{H}}_{\rm{4}}}}$ $_{{\rm{C}}{{\rm{H}}_{\rm{4}}}} $ $_{{\rm{C}}{{\rm{H}}_{\rm{4}}}} $ Abstract:Three important geological elements, i.e. high sedimentation rate, strong tectonic activity and high heat flow, promote the wide distribution of hydrocarbon fluid seeps and leakage structures such as mud volcanos and gas chimneys on the western slope of Okinawa Trough. Several previous studies have been conducted to reveal the mud volcano geomorphology and forming conditions, in particular the bottom simulation reflectors of gas hydrate accumulated in the mud volcano. However, rare researches focused on the geochemistry of the pore fluids and the origin of methane saturated in the pore water of sediments recovered from the mud volcano. In this work, seafloor drilling rig was deployed for two shallow holes to recover sediment and pore water samples from the mud volcanos. Geochemical analysis of pore water molecular ratios and isotopic compositions show that C1/C2 vary from 960.53 to 1 120.75 in the core 18-01 and from 1 064.66 to 1 546.74 in the core 18-05, while the carbon isotopic values of pore water methane exhibit a variation from −36.07‰ to −56.60‰ V-PDB in the core 18-01 and from −36.10‰ to −62.92‰ V-PDB in the core 18-05 respectively. Combined with molecular ratios, stable carbon and hydrogen isotopic compositions, we conclude that the pore water methane is derived from thermal degradation of organic matter. As the result of conversion from smectite to illite induced overpressure in deep sediments, thermogenic methane was driven along gas chimney and tectonic conduits and migrated to the shallow sediments, then formed mud volcanos and associated methane plumes in the overlying water.
-
Key words:
- thermogenic methane /
- mud volcano /
- pore water /
- overpressure /
- Okinawa Trough
-
-
图 4 孔隙水烃类浓度C1/C2比值与甲烷稳定碳同位素“Bernard”图,以及示踪的烃类气体来源(底图据文献[19]修改)
Figure 4.
图 5 18-01与18-05孔孔隙水甲烷稳定碳、氢同位素特征,以及示踪的烃类气体来源(底图据文献[19]修改)
Figure 5.
表 1 取样站位信息
Table 1. Detailed depictions of study sites.
站位 经度 纬度 水深/m 样长/m 18-01孔 127°22.34′ 28°46.25′ 1 005 54.30 18-05孔 127°22.12′ 28°47.16′ 1 100 54.17 -
[1] 何家雄, 万志峰, 张 伟, 等. 南海北部泥底辟/泥火山形成演化与油气及水合物成藏[M]. 北京: 科学出版社, 2019.
[2] Dimitrov L I. Mud volcanoes-the most important pathway for degassing deeply buried sediments[J]. Earth-Science Reviews,2002,59:49-76. doi: 10.1016/S0012-8252(02)00069-7
[3] Seol J,Lee H. Natural gas hydrate as a potential energy resource:From occurrence to production[J]. Korean Journal of Chemical Engineering,2013,30(4):771-786. doi: 10.1007/s11814-013-0033-8
[4] Boswell R,Collett T. The gas hydrates resource pyramid[J]. Fire in the Ice,2006,6(2):5-7.
[5] Yoneda J,Kida M,Konno Y,et al. In situ mechanical properties of shallow gas hydrate deposits in the deep seabed[J]. Geophysical Research Letters,2019,14:459-468.
[6] Pape T,Patriziam G,Sebastian H,et al. Hydrocarbon seepage and its sources at mud volcanoes of the Kumano forearc basin,Nankai Trough subduction zone[J]. Geochemistry Geophysics Geosystems,2014,15:2180-2194. doi: 10.1002/2013GC005057
[7] Brooks J M,Kennicutt II M C,Fay R R,et al. Thermogenic gas hydrates in the Gulf of Mexico[J]. Science,1984,225:409-411. doi: 10.1126/science.225.4660.409
[8] Lein A,Vogt P,Crane K.,et al. Chemical and isotopic evidence for the nature of the fluid in CH4-containing sediments of the Håkon Mosby Mud Volcano[J]. Geo-Marine Letters,1999,19(1):76-83.
[9] Li A,Cai F,Wu N Y,et al. Late Pleistocene shelf-edge delta clinoforms along the rift margin of the northern Okinawa Trough[J]. Geological Journal,2020:1-12.
[10] Liu B,Li S Z,Suo Y,et al. The geological nature and geodynamics of the Okinawa Trough,Western Pacific[J]. Geological Journal,2016,51(S1):416-428.
[11] Li Q,Cai F,Yan G J,et al. Widespread methane seep activities along the western slope of the Okinawa trough,East China Sea[J]. Acta Geologica Sinica,2017,91:1505-1506. doi: 10.1111/1755-6724.13383
[12] Xing J H,Jiang X D,Li D Y. Seismic study of the mud diapir structures in the Okinawa Trough[J]. Geological Journal,2016,51:203-208.
[13] Li D Y,Chen H Y,Xu S J,et al. Stratigraphic sequence and sedimentary systems in the middle-southern continental slope of the East China Sea from seismic reflection data:Exploration prospects of gas hydrate[J]. Journal of Ocean University of China (Oceanic and Coastal Sea Research),2019,18:1-15. doi: 10.1007/s11802-019-3526-1
[14] Xu N,Wu S G,Shi B Q,et al. Gas hydrate associated with mud diapirs in southern Okinawa Trough[J]. Marine and Petroleum Geology,2009,26:1413-1418. doi: 10.1016/j.marpetgeo.2008.10.001
[15] 李乃胜. 冲绳海槽断裂构造的研究[J]. 海洋与湖沼,1988,19(4):347-358.
[16] 栾锡武,秦蕴珊. 冲绳海槽宫古段西部槽底海底气泉的发现[J]. 科学通报,2005,50(8):802-810. doi: 10.3321/j.issn:0023-074X.2005.08.014
[17] Yin P,Berné S,Vagner P,et al. Mud volcanoes at the shelf margin of the East China Sea[J]. Marine Geology,2003,194(3/4):135-149.
[18] 李官保,刘保华,李乃胜. 冲绳海槽地热研究中若干问题的探讨[J]. 海洋通报,2006,25(5):70-76. doi: 10.3969/j.issn.1001-6392.2006.05.011
[19] Whiticar M. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology,1999,161:291-314. doi: 10.1016/S0009-2541(99)00092-3
[20] Borowski W S,Paull C K,Ussler III W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydfate[J]. Geology,1996,24:655-658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2
[21] Borowski W S,Paull C K,Ussler III W. Global and local variations of interstitial sulfate gradients in deep-water,continental margin sediments:Sensitivity to underlying methane and gas hydrates[J]. Marine Geology,1999,159:131-154. doi: 10.1016/S0025-3227(99)00004-3
[22] Li Q,Cai F,Liang J,et al. Geochemical constraints on the methane seep activity in western slope of the middle Okinawa Trough,the East China Sea[J]. Science China:Earth Sciences,2015,58:986-995.
[23] Matsumoto R. Borowski W S. Gas hydrate estimates from newly determined oxygen isotopic fractionation (αGH-IW) and δ18O anomalies of the interstitial waters: Leg 164, Blake ridge[C]//Proceedings of the Ocean Drilling Program, Scientific Results, 2000, 164: 59-66.
[24] Schoell M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins[J]. Geochimica et Cosmochimica Acta,1980,44:649-661. doi: 10.1016/0016-7037(80)90155-6
[25] Schoell M. Multiple origins of methane in the Earth[J]. Chemical Geology,1988,71:1-10. doi: 10.1016/0009-2541(88)90101-5
[26] Pohlman J W,Kaneko M,Henuer V B,et al. Methane sources and production in the northern Cascadia margin gas hydrate system[J]. Earth and Planetary Science Letters,2009,287:504-512. doi: 10.1016/j.jpgl.2009.08.037
[27] Roger S,Joye S,Stephen T S,et al. Thermogenic gas hydrates and hydrocarbon gases in complex chemosynthetic communities,Gulf of Mexico continental slope[J]. Organic Geochemistry,1999,30:485-497. doi: 10.1016/S0146-6380(99)00050-9
[28] Liu C L,Meng Q G,He X L,et al. Characterization of natural gas hydrate recovered from Pearl River Mouth basin in South China Sea[J]. Marine and Petroleum Geology,2015,61:14-21. doi: 10.1016/j.marpetgeo.2014.11.006
[29] Wilson R M,Macelloni L,Simonetti A,et al. Subsurface methane sources and migration pathways within a gas hydrate mound system,Gulf of Mexico[J]. Geochemistry Geophysics Geosystems,2014,15:89-107. doi: 10.1002/2013GC004888
[30] Snyder G T,Sano Y,Takahata N,et al. Magmatic fluids play a role in the development of active gas chimneys and massive gas hydrates in the Japan Sea[J]. Chemical Geology,2020,535:119462. doi: 10.1016/j.chemgeo.2020.119462
[31] Stolper D A,Lawson M,Davis C L,et al. Formation temperatures of thermogenic and biogenic methane[J]. Science,2014,344(6191):1500-1503. doi: 10.1126/science.1254509
[32] 李家彪. 东海区域地质[M]. 北京: 海洋出版社, 2008.
[33] Matsumoto R, Kakuwa Y, Snyder G T, et al. Occurrence and origin of thick deposits of massive gas hydrate, eastern margin of the sea of Japan[C]// 9th International Conference on Gas Hydrates. Denver, Colorado, USA, 2017.
[34] Matsumoto R,Tanahashi M,Kakuwa Y,et al. Recovery of thick deposits of massive gas hydrates from gas chimney structures,eastern margin of Japan Sea Japan Sea shallow gas hydrate project[J]. Fire in the Ice,2017,17:1-6.
[35] Tryon M D,Henry P,Çağatay M N,et al. Pore fluid chemistry of the North Anatolian fault zone in the sea of Marmara:A diversity of sources and processes[J]. Geochemistry Geophysics Geosystems,2010,11:1-22.
[36] Nguyen B T T,Kido M,Okawa N,et al. Compaction of smectite-rich mudstone and its influence on pore pressure in the deepwater Joetsu Basin,Sea of Japan[J]. Marine and Petroleum Geology,2016,78:848-869. doi: 10.1016/j.marpetgeo.2016.07.011
-