APPLICATION OF THIN LAYER LITHOLOGICAL RESERVOIR PREDICTION TECHNOLOGY FOR VARIABLE-DEPTH STEAMER SEISMIC IN PEARL RIVER MOUTH BASIN
-
摘要:
珠江口盆地惠州凹陷南缘发育典型的辫状河三角洲水下分流河道沉积砂体,其特点是厚度薄,横向变化快。目前基于常规地震资料开展的储层预测研究难以准确落实其砂体展布、岩性边界及储层厚度。相比于常规采集地震资料,斜缆宽频地震资料拥有更高的信噪比、保真度、分辨率和更宽的频带等优势。以H油田典型薄层岩性油藏为例,基于斜缆宽频地震资料,利用叠前反演技术开展储层预测研究,并且刻画了储层内部结构及砂体空间叠置关系。预测结果准确落实了岩性边界真实位置,砂体厚度预测与实际钻井资料吻合度达到80%。表明斜缆采集宽频地震数据的储层预测技术可为薄层岩性油藏钻井开发提供有效指导,也有望在海上薄层岩性圈闭评价工作中得到推广。
Abstract:Underwater distributary channel sand bodies, a typical kind of braided river delta deposits, characterized by thin thickness and fast lateral variation, are well developed in the southern margin of Huizhou Sag, Pearl River Mouth Basin. At present, the reservoir prediction research based on conventional seismic data is difficult to accurately disclose the sand body distribution pattern, define the lithological boundaries and reservoir thickness. Taking the typical thin-layered lithological reservoir in H oilfield as an example, this paper introduces the advantages of oblique cable broadband seismic survey. Compared to conventional seismic data acquisition, variable-depth steamer broadband seismic data has higher signal-to-noise ratio, fidelity, higher resolution and wider frequency band. Based on the broadband variable-depth steamer seismic, the reservoir prediction research is carried out by using pre-stack inversion technology. The predicted results accurately defined the real position of lithological boundary, and the coincidence degree of sand body thickness prediction with actual drilling is up to 80%. Then the internal structure of the reservoir and the spatial superposition relationship of sand bodies are described, which provides effective guidance for drilling and development of thin-layered lithological reservoirs. Reservoir prediction technology based on broadband seismic data acquired by inclined cable is expected to be popularized in the evaluation of offshore thin lithological traps.
-
-
[1] 吴志强. 海洋宽频带地震勘探技术新进展[J]. 石油地球物理勘探,2014,49(3):421-430.
[2] 余本善, 孙乃达. 海上宽频地震采集技术新进展[C]. 北京: 石油科技论坛, 2015.
[3] 谢玉洪,李列,袁全社. 海上宽频地震勘探技术在琼东南盆地深水区的应用[J]. 石油地球物理勘探,2012,47(3):430-435.
[4] 许自强,李添才,王用军,等. 倾斜电缆地震资料处理关键技术及其效果分析[J]. 中国海上油气,2015,27(6):10-18.
[5] 祁鹏,黄饶,仝中飞,等. 宽频地震在东海盆地A凹陷油气勘探中的应用[J]. 海洋地质前沿,2020,36(6):69-75.
[6] 唐进,杨凯,顾汉明,等. 海上变深度缆地震采集宽频机理分析[J]. 地球物理学进展,2015,30(5):2386-2392.
[7] 金明霞,宋鑫,易淑昌,等. 海洋地震变深度电缆采集数据的频谱分析及消除鬼波研究[J]. 物探与化探,2018,42(3):528-536.
[8] 张振波,李东方. 斜缆宽频地震勘探技术在珠江口盆地的应用[J]. 石油地球物理勘探,2014,49(3):451-456.
[9] 李博文, 黄捍东, 罗亚能, 等, 白云凹陷深水复杂构造区斜缆地震资料反演应用研究[C]//中国地球科学联合学术年会, 北京: 2017.
[10] 盖永浩,李列,欧阳敏. 海洋宽频地震采集系统及其应用[J]. 断块油气田,2020,27(2):198-202.
[11] 黄福强,李斌,张异彪,等. 西湖凹陷斜缆采集关键参数优选研究[J]. 物探与化探,2020,44(4):770-777.
[12] 周含蕊,宋建国,宫云良. 两种斜缆采集正演模拟及虚反射压制效果分析[J]. CT 理论与应用研究,2016,25(3):319-330.
[13] 姜雨,陈华,姚刚,等. 针对海上开发区的多船宽方位地震采集观测系统优化设计—以东海西湖凹陷为例[J]. 海洋地质前沿,2016,36(11):60-65.
[14] 胡斌,李斌,冯奇坤,等. 斜缆宽频滤波特性研究[J]. 海洋石油,2019,39(3):15-20.
[15] 杨振武. 海洋石油地震勘探-资料采集与处理[M]. 北京: 石油工业出版社, 2012, 1-23.
[16] 何敏, 陈兆明, 李颖薇, 等. 斜缆采集宽频地震在惠州凹陷的应用[C]. 北京: 物探技术研讨会, 2017.
[17] 轩义华,代一丁,张振波,等. 珠江口盆地惠州某区平缆与斜缆地震资料 叠前反演综合研究[J]. 天然气地球科学,2017,28(11):1755-1760.
[18] 肖曦,张益明,王志红,等. 宽频数据在致密砂岩储层预测中的应用[J]. 地球物理学进展,2020,35(1):367-373.
[19] ZHANG Z B,XUAN Y H,DENG Y. Simultaneous pre-stack inversion of variable-depth streamer seismic data[J]. Applied Geophysics,2019,16(1):92-100. doi: 10.1007/s11770-019-0746-5
[20] 陈昌. 叠前地震反演在清水地区砂砾岩优质储层预测中的应用[J]. 海洋地质前沿,2017,33(6):61-64.
-