High-resolution seismic data processing and preliminary results for gas hydrates in the Makran subduction zone
-
摘要:
综合地球物理调查表明,北印度洋阿拉伯海马克兰俯冲带海域水合物资源非常丰富。为调查该海域水合物及与其相关的流体活动,采集了高分辨率多道地震数据,分析了原始地震数据的特征,并按照常规水合物地震数据处理流程进行处理,获得了较好的处理效果。基于新采集处理的地震数据,识别出了经典的BSR、非经典的BSR及双BSR现象。双BSR的发现表明该海域的水合物处在一个复杂的动态过程中,对该海域水合物的研究具有重要意义。由于本次地震数据的排列长度较短(最大排列长度1 300 m),对该海域水合物的定量分析以及精细刻画受到了限制。结合此次采集的短排列数据以及理论公式分析了排列长度对水合物勘探的影响,指出在水合物的勘探中,除了震源能量、频率、道间距等参数外,排列长度也是一个需要优化设计的参数。
Abstract:Integrated geophysical survey has revealed that the Makran subduction zone in the northern Indian Ocean is rich in hydrates resources. Recently, high-resolution multi-channel seismic data have been collected by the authors to investigate hydrates and hydrates-related fluid activities in the area. We analyzed the characteristics of the original seismic data, processed the data following a standard data processing flow, and obtained good results. Using the newly collected and processed seismic data, we have not only identified the classical BSR, but also found the phenomena of non-classical BSR and double BSR. The presence of double BSR indicates that the hydrate in this sea area is in a complex dynamic manner, which may have significant implications for gas hydrate investigation in the area. Owing to the short offset of the seismic data, which is only 1300 m in maximum, the quantitative analysis and fine characterization of hydrate in this area are limited. In this paper, the influence of offset on hydrate exploration is analyzed based on the data of short offset collected from this survey as well as the theoretical formula. It is suggested that the offset is also a parameter which needs to be optimized in hydrate exploration.
-
Key words:
- gas hydrate /
- Makran subduction zone /
- short offset /
- high resolution seismic /
- BSR
-
-
[1] BOSWELL R,COLLETT T S. Current perspectives on gas hydrate resource[J]. Energy and Environmental Science,2011,4:1206-1215. doi: 10.1039/C0EE00203H
[2] KVENVOLDEN K A. Gas hydrates-geological perspective and global change[J]. Reviews of Geophysics,1993,31:173-187. doi: 10.1029/93RG00268
[3] WHITE R S. Seismic bright spots in the gulf of Oman[J]. Earth Planetary Science Letter,1977,37:29-37. doi: 10.1016/0012-821X(77)90143-1
[4] SMITH G L,MCNEILL L C,HENSTOCK T J,et al. Fluid generation and distribution in the highest sediment input accretionary margin,the Makran[J]. Earth and Planetary Science Letters,2014,403:131-143. doi: 10.1016/j.jpgl.2014.06.030
[5] 龚建明,廖晶,尹维翰. 北印度洋马克兰增生楔天然气水合物的成藏模式[J]. 海洋地质与第四纪地质,2018,38(2):148-155.
[6] 龚建明,廖晶,孙晶,等. 巴基斯坦马克兰增生楔天然气水合物的主控因素[J]. 海洋地质前沿,2016,32(12):10-15.
[7] 王旭东,黄慧文,孙跃东,等. 北印度洋海底冷泉流体活动研究进展[J]. 热带海洋学报,2017,36(6):82-89.
[8] HILLMAN J I T,COOK A E,SAWYER D E,et al. The character and amplitude of “discontinuous”bottom-simulating reflections in marine seismic data[J]. Earth and Planetary Science Letters,2017,459:157-169. doi: 10.1016/j.jpgl.2016.10.058
[9] SHEDD W,BOSWELL R,FRYE M,et al. Occurrence and nature of “bottom simulating reflectors” in the northern gulf of Mexico[J]. Marine and petroleum geology,2012,34:31-40. doi: 10.1016/j.marpetgeo.2011.08.005
[10] TAMAKI M,FUJI T,SUZUKI K. Characterization and prediction of the gas hydrate reservoir at the second offshore gas production test site in the eastern Nankai Trough,Japan[J]. Energies,2017,10(10):1678. doi: 10.3390/en10101678
[11] SAIN K,MINSHULL T A,SINGH S C,et al. Evidence for a thick free gas layer beneath the bottom simulating reflector in the Makran accretionary prism[J]. Marine Geology,2000,164(1/2):3-12.
[12] DING F,SPIESS V,FEKETE N,et al. Interaction between accretionary thrust faulting and slope sedimentation at the frontal Makran accretionary prism and its implications for hydrocarbon fluid seepage[J]. Journal of Geophysical Research,2010,115(8):1-16.
[13] MCGEE T M. A single-channel seismic reflection method for quantifying lateral variations in BSR reflectivity[J]. Marine Geology,2000,164(1/2):29-35.
-