西沙群岛白云岩-铁白云岩空间变异的特征:来自地球化学的证据

沈江远, 付和平, 马骁, 许红, 赵强, 陈香玉, 李绪深, 张道军, 刘新宇, 闫琢玉. 西沙群岛白云岩-铁白云岩空间变异的特征:来自地球化学的证据[J]. 海洋地质前沿, 2021, 37(6): 18-30. doi: 10.16028/j.1009-2722.2020.198
引用本文: 沈江远, 付和平, 马骁, 许红, 赵强, 陈香玉, 李绪深, 张道军, 刘新宇, 闫琢玉. 西沙群岛白云岩-铁白云岩空间变异的特征:来自地球化学的证据[J]. 海洋地质前沿, 2021, 37(6): 18-30. doi: 10.16028/j.1009-2722.2020.198
SHENG Jiangyuan, FU Heping, MA Xiao, XU Hong, ZHAO Qiang, CHEN Xiangyu, LI Xushen, ZHANG Daojun, LIU Xinyu, YAN Zhuoyu. SPATIAL DISTRIBUTION OF ANKERITE AND DOLOMITE IN THE XISHA ISLANDS: EVIDENCE FROM GEOCHEMISTRY[J]. Marine Geology Frontiers, 2021, 37(6): 18-30. doi: 10.16028/j.1009-2722.2020.198
Citation: SHENG Jiangyuan, FU Heping, MA Xiao, XU Hong, ZHAO Qiang, CHEN Xiangyu, LI Xushen, ZHANG Daojun, LIU Xinyu, YAN Zhuoyu. SPATIAL DISTRIBUTION OF ANKERITE AND DOLOMITE IN THE XISHA ISLANDS: EVIDENCE FROM GEOCHEMISTRY[J]. Marine Geology Frontiers, 2021, 37(6): 18-30. doi: 10.16028/j.1009-2722.2020.198

西沙群岛白云岩-铁白云岩空间变异的特征:来自地球化学的证据

  • 基金项目: 国家自然科学基金(41872114);国家科技基础资源调查专项课题(2017FY201407)
详细信息
    作者简介: 沈江远(1993—),男,在读硕士,主要从事油气地质工程与生物礁研究工作. E-mail:874606194@qq.com
    通讯作者: 许红(1957—),男,博士,研究员,主要从事油气地质调查与资源勘探评价及海洋生物礁成因研究工作. E-mail:qdxhong@163.com
  • 中图分类号: P736.4;P588.24

SPATIAL DISTRIBUTION OF ANKERITE AND DOLOMITE IN THE XISHA ISLANDS: EVIDENCE FROM GEOCHEMISTRY

More Information
  • 成礁以来西沙群岛白云岩-铁白云岩大量发育,针对白云岩空间变异及成因演化的讨论具有重要意义。西科1井存在7层白云岩,对7层白云岩进行了划区处理,将7层白云岩层分为浅、中、深3类:<600 m为浅层(层一、层二、层三,合计厚度203 m),600~1 000 m为中层(层四、层五、层六,合计厚度79 m),>1 000 m为深层(层七,厚155 m)。通过对7层白云岩的主微量元素特征、成岩环境与成因模式及浅层、中层、深层白云岩地球化学数据之间的规律与差异的分析认为,西科1井白云岩受陆源物质影响小,高的SiO2可能来自西沙周缘火山地带。西沙地区白云岩成岩环境总的来讲属于氧化环境,但浅、中、深层成岩环境的氧化强度具有差异。西科1井白云岩的古盐度都较高,但层与层之间有着细微差异。西科1井白云岩锶含量总体偏低,受到淡水淋滤作用强烈,形成于古水深较浅的礁相台地环境,相比较而言,浅层受到大气淡水影响最强,中层次之,深层最弱。西沙白云岩成岩过程中受到高盐度海水、大气淡水和回流渗透作用等多种因素的影响。

  • 加载中
  • 图 1  西沙海域岛礁分布及西科1井位置

    Figure 1. 

    图 2  西沙群岛西科1井岩性剖面特征及取样位置

    Figure 2. 

    图 3  白云岩V、Mo、U频率分布直方图

    Figure 3. 

    图 4  白云岩V/Sc和V/Cr的分布及频率

    Figure 4. 

    图 5  白云岩的B/Ga和Sr/Ba分布图

    Figure 5. 

    图 6  白云岩B/Ga和Sr/Ba的频率分布直方图

    Figure 6. 

    图 7  西科1井白云岩Sr含量的频率分布直方图

    Figure 7. 

    图 8  西琛1井白云岩与冰期的关系图[54]

    Figure 8. 

    表 1  西科1井白云岩层位及含量

    Table 1.  Position and content of dolomite in the well Xike 1

    编号井深/m厚度/m地层年代白云石含量/%
    层一288.64~303.5815上新统90.90
    层二375.37~411.8836上中新统91.50
    层三423.78~575.9152上中新统92.40
    层四620~635.0615中中新统梅山组一段75.85
    层五759.1~775.0516中中新统梅山组二段93.90
    层六972~1019.848中中新统梅山组二段61.70
    层七1 032.5~1 187.5155下中新统82.50
    下载: 导出CSV

    表 2  西科1井白云岩层主量元素测试结果

    Table 2.  Test results of major elements in layers of dolostone in the well Xike 1

    /Wt%
    样品CaOFe2O3K2ONa2OMgOP2O5SiO2
    层一(N=21)最小值36.70.0160.0180.25612.5590.0454.930
    最大值45.80.0790.0480.94521.3570.08113.870
    平均值39.20.0370.0300.45519.7110.0609.589
    层二(N=23)最小值32.50.0120.0090.13717.9320.0449.710
    最大值37.90.2100.0461.48621.2520.09524.600
    平均值36.70.0690.0270.42020.1300.06014.234
    层三(N=64)最小值34.30.0080.0060.0531.5140.0135.100
    最大值52.20.2320.0611.00822.3740.07519.390
    平均值37.80.0370.0180.29520.1400.03812.094
    层四(N=5)最小值36.50.0070.0080.0565.8300.0160.000
    最大值52.50.0850.0520.69420.7850.05115.160
    平均值41.80.0290.0240.31116.4900.0398.576
    层五(N=9)最小值34.90.0120.0110.10018.8420.0308.900
    最大值38.50.0810.0360.88722.0880.05717.670
    平均值36.90.0400.0200.33420.4520.04313.299
    层六(N=18)最小值30.70.0020.0080.1453.0420.0253.180
    最大值51.40.2610.0751.05418.6190.08328.680
    平均值38.10.0410.0210.44313.4160.05317.966
    层七(N=69)最小值29.50.0060.0030.0691.1680.0136.960
    最大值51.30.1960.0740.47219.9500.08630.160
    平均值33.40.0390.0150.15317.9380.05322.154
    总样品(N=209)平均值36.40.0410.0200.29318.7150.04915.810
    下载: 导出CSV

    表 3  各层白云岩CaO与MgO、SiO2与MgO相关系数及显著性值P

    Table 3.  Correlation coefficient and significance value P between CaO and MgO,SiO2 and MgO in layers of dolostone

    层一层二层三层四层五层六层七
    CaO与MgO相关系数−0.870 70.833 0−0.789 2−0.974 90.265 7−0.961 7−0.886 7
    CaO与MgO的显著性值P1.37×10−72.38×10−75.77×10−154.76×10−30.492.03×10−103.91×10−24
    SiO2与MgO相关系数0.536 5−0.909 30.164 80.869 5−0.580 00.879 80.569 6
    SiO2与MgO的显著性值P0.013.12×10−100.190.060.101.50×10−63.25×10−7
    注:<0.05为存在显著性
    下载: 导出CSV

    表 4  浅、中、深层白云岩的CaO与MgO、SiO2与MgO相关系数及显著性值P

    Table 4.  Correlation coefficient and significance value P between CaO and MgO,SiO2 and MgO in the dolostone of shallow,middle and deep zones

    浅层中层深层
    CaO与MgO相关系数−0.656 5−0.788 1−0.886 7
    CaO与MgO的显著性值P3.88×10−158.60×10−83.91×10−24
    SiO2与MgO相关系数0.069 90.365 50.567 0
    SiO2与MgO的显著性值P0.460.043.25×10−7
    注:<0.05为存在显著性
    下载: 导出CSV

    表 5  浅、中、深层白云岩主量元素平均含量

    Table 5.  Average content of major elements in the dolostone of shallow,middle and deep zones

    / Wt%
    CaOMgOFe2O3P2O5K2ONa2OSiO2
    浅层37.8420.050.0440.0470.0220.35312.079
    中层38.3415.880.0390.0480.0210.39215.186
    深层33.4017.940.0390.0530.0150.15322.154
    下载: 导出CSV

    表 6  西科1井白云岩层微量元素测试结果

    Table 6.  Test results of trace elements in layers of dolostone in the well Xike 1

    /mg/kg
    微量元素层一层二层三层四层五层六层七全球第四系碳酸盐岩
    Ti最小值12.2365.5504.4308.80534.71355.51641.184400
    最大值63.870108.121131.17572.23089.901299.868381.004
    平均值30.88242.98422.24932.61653.371121.13395.857
    Al最小值93.72689.12545.19165.70188.55655.30384.4694 200
    最大值991.1373 191.5635 299.111891.471587.9542 633.0811 765.158
    平均值332.3461 307.560457.073384.526308.530561.604442.430
    Zr最小值0.2570.1470.1370.3460.2610.2850.347
    最大值1.8461.9151.2811.5791.3795.4665.171
    平均值0.6520.8950.5770.8040.7081.3521.20819
    Sc最小值0.3310.2260.2120.3220.2030.3460.2531
    最大值0.5491.1070.6940.5000.6300.9030.848
    平均值0.4530.4400.3740.4390.3600.5590.453
    Th最小值0.0430.0300.0190.0380.0440.0480.0471.7
    最大值0.1860.3490.2740.1950.2270.4290.963
    平均值0.1030.1020.0710.1130.1010.1410.142
    V最小值1.2370.3390.3504.1092.0040.3700.59220
    最大值10.70710.26125.96611.96722.3627.72031.826
    平均值2.3773.1394.1978.2348.1961.9099.554
    Mo最小值0.0440.0780.0310.0580.0470.0420.0280.4
    最大值1.6822.5421.3760.3501.0421.5451.559
    平均值0.2170.3890.1760.1400.3070.2300.206
    U最小值0.7350.4610.5100.7700.4870.3170.3842.2
    最大值2.3172.9563.0043.45216.4910.63513.511
    平均值1.1691.0701.1591.7054.3440.5012.489
    Sr最小值240.700175.300166.800192.000169.300176.900187.700610
    最大值376.800264.000537.700271.700202.800425.800526.500
    平均值285.776210.874209.189217.720184.944250.889231.986
    V/Sc最小值2.8141.4551.21210.7954.3720.7371.901
    最大值12.12830.53972.10723.92863.1688.55072.846
    平均值5.4096.60811.53918.06724.3543.16923.313
    V/Cr最小值0.1210.0430.0380.2710.1100.0240.091
    最大值1.2541.4862.9180.6792.0720.4863.002
    平均值0.4680.5400.4140.4450.5690.1190.796
    B/Ga最小值19.2743.1784.3355.43514.8164.9678.008
    最大值73.912163.711147.77757.495105.23469.98686.939
    平均值43.94136.78660.03533.08764.40829.65935.411
    Sr/Ba最小值33.42140.44418.78150.08613.49012.32911.674
    最大值112.020106.453175.044177.60564.644172.538133.263
    平均值77.08069.34788.11798.11746.60577.72165.274
    注:全球第四系碳酸盐岩平均值来自参考文献[26]
    下载: 导出CSV

    表 7  浅、中、深层白云岩微量量元素平均含量

    Table 7.  Average content of trace elements in the dolostone of shallow,middle and deep zones

    /(mg/kg)
    微量元素浅层中层深层
    V3.6184.6669.554
    Mo0.2290.2370.206
    U1.1421.7702.489
    Sr224.440227.159231.986
    V/Sc9.29711.45523.313
    V/Cr0.4510.2960.796
    B/Ga51.95539.96835.411
    Sr/Ba81.97372.15665.274
    下载: 导出CSV

    表 8  浅、中、深层白云岩成岩环境对比

    Table 8.  Comparison of diagenetic environment of dolomites in the shallow,middle and deep zones

    浅层中层深层
    氧化强度较强一般较弱
    古盐度
    锶含量较低较高
    古水深较浅较深
    浓缩海水白云岩化作用影响较强一般较弱
    大气淡水淋滤溶蚀作用影响较强一般较弱
    回流渗透白云岩化作用影响较弱一般较强
    下载: 导出CSV
  • [1]

    MACHEL H G. Concepts and models of dolomitization:a critical reappraisal[J]. Geological Society of London Special Publications,2004,235(1):7-63. doi: 10.1144/GSL.SP.2004.235.01.02

    [2]

    SUN S Q. Dolomite reservoirs:porosity evolution and reservoir characterisics[J]. AAPG Bulletin,1995,79(2):186-204.

    [3]

    SUN Q L,MA Y B,ZHAO Q,et al. Different reef carbonate diagenesis and its influential factors,northern South China Sea[J]. Natural Gas Geoscience,2008,19(5):665-672.

    [4]

    柴妮娜. 礁型油气藏的原油地球化学特征与油水界面研究: 以珠江口盆地流花11-1油田为例[D]. 武汉: 长江大学, 2014.

    [5]

    刘宝明,夏斌,金庆焕,等. 南海盆地演化及碳酸盐岩油气勘探[J]. 海相油气地质,2003,8(1/2):10-16.

    [6]

    曹佳琪,张道军,翟世奎,等. 西沙岛礁白云岩化特征与成因模式分析[J]. 海洋学报,2016,11(38):125-139.

    [7]

    WIGNALL P B,TWITCHETT R J. Oceanic anoxia and the End Permian Mass Extinction[J]. Science,1996,272(5265):1155-1158. doi: 10.1126/science.272.5265.1155

    [8]

    YANG X M , BAS M. Chemical compositions of carbonate minerals from Bayan Obo, Inner Mongolia, China: implications for petrogenesis[J]. Lithos,2004,72(1/2):97-116.

    [9]

    修淳,罗威,杨红军,等. 西沙石岛西科1井生物礁碳酸盐岩地球化学特征[J]. 地球科学(中国地质大学报),2015,40(4):648-652.

    [10]

    乔培军,朱伟林,邵磊,等. 西沙群岛西科1井碳酸盐岩稳定同位素地层学[J]. 地球科学(中国地质大学报),2015,40(4):726-732.

    [11]

    魏喜,贾承造,孟卫工. 西沙群岛西琛1井碳酸盐岩白云石化特征及成因机制[J]. 吉林大学学报,2008,38(2):217-224.

    [12]

    王振峰,时志强,张道军,等. 西沙群岛西科1井中新统—上新统白云岩微观特征及成因[J]. 地球科学(中国地质大学学报),2015,40(4):633-644.

    [13]

    王崇友,何希贤,裘松余. 西沙群岛西永一井碳酸盐岩地层与微体古生物的初步研究[J]. 石油实验地质,1979,7(1):23-32.

    [14]

    朱伟林,王振峰,米立军,等. 南海西沙西科1井层序地层格架与礁生长单元特征[J]. 地球科学(中国地质大学学报),2015,40(4):677-687.

    [15]

    何起祥,张明书. 西沙群岛新第三纪白云岩的成因与意义[J]. 海洋地质与第四纪地质,1990,10(2):45-55.

    [16]

    魏喜,祝永军,许红,等. 西沙群岛新近纪白云岩形成条件的探讨:C、O同位素和流体包裹体证据[J]. 岩石学报,2006,22(9):2394-2404. doi: 10.3321/j.issn:1000-0569.2006.09.016

    [17]

    刘昭蜀, 等. 南海地质[M]. 北京: 科学出版社, 2002: 1-502.

    [18]

    吕炳全,徐国强,王红罡,等. 南海新生代碳酸盐台地淹没事件记录的海底扩张[J]. 地质科学,2002,37(4):405-414.

    [19]

    吕修祥,金之钧. 碳酸盐岩油气田分布规律[J]. 石油学报,2000(3):8-12,107. doi: 10.3321/j.issn:0253-2697.2000.03.002

    [20]

    吕彩丽,姚永坚,吴时国,等. 南沙海区万安盆地中新世碳酸盐台地的地震响应与沉积特征[J]. 地球科学,2011(5):931-938.

    [21]

    XU H,JI Z P,LI S Y,et al. Zircon SHRIMP U-Pb dating of the Neogene coral reefs,Xisha Islands,South China Sea:implications for tectonic evolution[J]. China Geology,2018,1(1):49-60. doi: 10.31035/cg2018007

    [22]

    黄海波,丘学林,胥颐,等. 利用远震接收函数方法研究南海西沙群岛下方地壳结构[J]. 地球物理学报,2011,54(11):2788-2798. doi: 10.3969/j.issn.0001-5733.2011.11.009

    [23]

    徐国强,吕炳全,王红罡. 新生代南海北部碳酸盐岩台地的淹没事件研究[J]. 同济大学学报,2002,30(1):35-40.

    [24]

    罗威,张道军,刘新宇,等. 西沙地区西科1井综合地层学研究[J]. 地层学杂志,2018,42(4):485-498.

    [25]

    杨虎, 钟波, 刘琼荪. 应用数理统计[M]. 北京: 清华大学出版社, 2006: 1-202.

    [26]

    TUREKIAN K K,WEDEPOHL K H. Distribution of the elements in some major unites of the Earth’s Crust[J]. GSA Bulletin,1961,72(2):175-192. doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2

    [27]

    CALVERT S E,PEDERSEN T F. Geochemistry of recent oxic and anoxic marine sediments:implication for the geological record[J]. Marine Geology,1993,113:76-88.

    [28]

    HILD E,BRUMSACK H J. Major and minor element geochemistry of lower Aptian sediments from the NW German Basin(core Hohenegglesen KB 40)[J]. Cretaceous Research,1998,19:615-633. doi: 10.1006/cres.1998.0122

    [29]

    WEBB G E,KAMBER B S. Rare earth elements in Holocene reefal microbialites:a new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta,2000,64(9):1557-1565. doi: 10.1016/S0016-7037(99)00400-7

    [30]

    NOTHDURFT L D,WEBB G E,KAMBER B S. Rare earth element geochemistry of Late Devonian reefal carbonates,Canning Basin,Western Australia:confirmation of a seawater REE proxy in ancient limestones[J]. Geochim Cosmochim Acta,2004,68:263-283. doi: 10.1016/S0016-7037(03)00422-8

    [31]

    LING H F,CHEN X,LI D,et al. Cerium anomaly variations in Ediacaran-earliest Cambrian carbonates from the Yangtze Gorges area. South China:implications for oxygenation of coeval shallow seawater[J]. Precambrian Research,2013,225:110-127. doi: 10.1016/j.precamres.2011.10.011

    [32]

    陈雅丽,储雪蕾,张兴亮,等. 陕南镇巴地区灯影组白云岩的碳、硫同位素和微量元素指示:埃迪卡拉纪末期浅海的氧化还原环境[J]. 中国科学:地球科学,2015,45(7):963-981.

    [33]

    吴世敏,周蒂,丘学林. 南海北部陆缘的构造属性问题[J]. 高校地质学报,2001,7(4):419-426. doi: 10.3969/j.issn.1006-7493.2001.04.006

    [34]

    冯英辞,彦文欢,姚衍桃,等. 西沙群岛礁区的地质构造及其活动性分析[J]. 热带海洋学报,2015,34(3):48-53. doi: 10.3969/j.issn.1009-5470.2015.03.006

    [35]

    许红,张金川,蔡峰. 西沙群岛中新世生物礁矿物相研究及其意义[J]. 海洋地质与第四纪地质,1994,14(4):15-23.

    [36]

    赵强,许红,吴时国,等. 西沙石岛风成碳酸盐沉积的早期成岩作用[J]. 沉积学报,2013,31(2):220-236.

    [37]

    TRIBOVILLARD N,ALGEO T J,LYONS T,et al. Trace metals as paleoredox and paleoproductivity proxies:an update[J]. Chemical Geology,2006,232:12-32. doi: 10.1016/j.chemgeo.2006.02.012

    [38]

    RIMMER S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales,central Appalachian Basin(USA)[J]. Chemical Geology,2004,206:373-391. doi: 10.1016/j.chemgeo.2003.12.029

    [39]

    EMERSON S R,HUESTED S S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater[J]. Marine Chemistry,1991,34:177-196. doi: 10.1016/0304-4203(91)90002-E

    [40]

    严德天,陈代钊,王清晨,等. 扬子地区奥陶系-志留系界限附近地球化学研究[J]. 中国科学:地球科学,2009,39(3):285-299.

    [41]

    KIMURA H,WATANABE Y. Ocean anoxia at the Precambrian-Cambrian boundary[J]. Geology,2001,29:995-998. doi: 10.1130/0091-7613(2001)029<0995:OAATPC>2.0.CO;2

    [42]

    姚春彦,马东升,丁海峰,等. 新疆阿克苏地区早寒武世碳酸盐岩沉积环境:微量元素和碳同位素证据[J]. 地球化学,2011,40(1):64-71.

    [43]

    PIPER D Z. Seawater as the source of minor elements in black shales,phosphorites,and other sedimentary rocks[J]. Chemical Geology,1994,114(1/2):95-114.

    [44]

    CRUSIUS J,CALVERT S,PEDERSEN T,et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic,sbuoxic and anoxic conditions of deposition[J]. Earth and Planetary Science Letters,1996,145(1):65-78.

    [45]

    JONES B,MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology,1994,111(1/4):111-129.

    [46]

    DILL H. Metallogenesis of early Paleozoic graptolite shales from the Graefenthal Horst(Northern Bavaria-Federal Republic of Germany)[J]. Economic Geology,1986,81(4):889-903. doi: 10.2113/gsecongeo.81.4.889

    [47]

    DEGENS E T,WILLIAMS E G,KEITH M L. Application of geochemical criteria [Pennsylvania],Part 2 of environmental studies of carboniferous sediments[J]. Journal of Immunology,1958,141(9):3197-202.

    [48]

    王益友,郭文莹,张国栋. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J]. 同济大学学报(自然科学版),1979(2):54-63.

    [49]

    朱丽霞,谭富文,陈明,等. 羌塘盆地那底岗日地区上侏罗统—下白垩统碳酸盐岩微量元素与古环境[J]. 成都理工大学学报(自然科学版),2011,38(5):549-556.

    [50]

    李进龙,陈东敬. 古盐度定量研究方法综述[J]. 油气地质与采收率,2003,10(5):1-3. doi: 10.3969/j.issn.1009-9603.2003.05.001

    [51]

    BRAND U,VEIZER J. Chemical diagenesis of a multicomponent carbonate system-1:trace elements[J]. Journal of Sedimentary Research,1980,50(4):1219-1236.

    [52]

    王利超,胡文瑄,王小林,等. 白云岩化过程中锶含量变化及锶同位素分馏特征与意义[J]. 石油与天然气地质,2016,37(4):465-472.

    [53]

    VEIZER J. Trace elements and isotopes in sedimentary carbonates[J]. Reviews in Mineralogy and Geochemistry,1983,11(1):265-299.

    [54]

    许红,蔡峰,王玉净,等. 西沙中新世生物礁演化与藻类的造礁作用[J]. 科学通报,1999,44(13):1435.

    [55]

    陆钧,陈木宏. 新生代主要全球气候事件研究进展[J]. 热带海洋学报,2006,25(6):72-79. doi: 10.3969/j.issn.1009-5470.2006.06.013

    [56]

    胡修棉,王成善. 100 Ma以来若干重大地质事件与全球气候变化[J]. 大自然探索,1999,18(67):53-58.

    [57]

    安芷生,王苏民,吴锡浩,等. 中国黄土高原的风积证据:晚新生代北半球大冰期开始及青藏高原的隆升驱动[J]. 中国科学(D辑),1998,28(6):481-490.

    [58]

    张建勇,郭庆新,寿建峰,等. 新近纪海平面变化对白云石化的控制及对古老层系白云岩成因的启示[J]. 海相油气地质,2013,18(4):46-52. doi: 10.3969/j.issn.1672-9854.2013.04.007

    [59]

    邵龙义,何宏,彭苏萍,等. 塔里木盆地巴楚隆起寒武系及奥陶系白云岩类型及形成机理[J]. 古地理学报,2002,4(2):19-30. doi: 10.3969/j.issn.1671-1505.2002.02.003

  • 加载中

(8)

(8)

计量
  • 文章访问数:  1696
  • PDF下载数:  145
  • 施引文献:  0
出版历程
收稿日期:  2020-12-04
刊出日期:  2021-06-28

目录