CHARACTERISTICS AND DEPOSITIONAL MODEL OF THE FAULT-CONTROLLED BOTTOM-CURRENT DRIFT DEPOSITS IN THEBEIKANG BASIN, SOUTHERN SOUTH CHINA SEA
-
摘要:
深海底流为深水沉积过程的重要要素之一,其可直接搬运或间接改造沉积物,并在海底形成沉积型地貌,即底流漂积体。在底流漂积体的8个沉积亚类中,受断层活动影响的断控型漂积体研究程度较低,全球范围内相关实例较少,其形态特征及沉积模式并无统一的描述。笔者以南海南部北康盆地为例,基于高分辨率多波束及地震反射资料解释,系统总结了断控漂积体的形态参数和在地震资料中的识别标志;确定了同沉积断控型漂积体和后沉积断控型漂积体;探讨了不同类别对应的断层活动、沉积过程及其沉积模式。断层活动和深海底流沉积作用同时期发生时,可形成具有不规则丘状结构的同沉积断控型漂积体;而当断层活动发生于底流作用之前时,前期断层活动形成的陡坎使得底流流速增加,从而有效地改造海底地貌,形成后沉积断控型漂积体。然而,目前的研究仅限于正断层活动与底流作用的耦合关系,其他类型的断层运动(如逆断层、走滑断层等)有必要在未来底流沉积研究中给予重点关注。
Abstract:Bottom current is a significant depositional process in deep sea, by which sediments can be directly transported to form contourite drifts on seafloor. Among the different types of contourite drifts, fault-controlled drifts are not well constrained and few studies have been devoted to their morphological features and depositional patterns. This study is to summarize the features for seismic identification of fault-controlled drifts based on high-resolution multibeam bathymetric and seismic data from the Beikang Basin, southern South China Sea. Two sub-types of fault-controlled drifts, i.e. the syn-depositional and post-depositional fault-controlled drifts are recognized. Their formation mechanism and relationships with faulting are discussed in this paper. According to the interaction between faulting and bottom-current processes the bottom currents can be divided into two types: 1) bottom currents simultaneous to the fault movement, generating the synchronous fault-controlled drifts; 2) bottom currents after the fault movement generating the post-depositional drifts. However, the researches conducted so far are limited to the drift deposits related to normal faults. More researches are required for the drifts formed in other active tectonic settings, such as those related to strike-slip faults and reverse faults.
-
Key words:
- normal fault /
- bottom current /
- contourite drift /
- sedimentary depositional pattern /
- Beikang Basin /
- South China Sea
-
-
图 1 底流特征以及地形地貌对其行为路径的影响[4]
Figure 1.
图 5 断控型漂积体沉积亚类及沉积模式示意图[23]
Figure 5.
表 1 北康盆地地震反射界面及所对应的地质事件[21]
Table 1. Seismic reflection discontinuities and correspondent geologic events[21]
表 2 断控漂积体形态沉积特征及其与断层运动的交互关系
Table 2. Fault-controlled drift characteristics and associated fault-contourite interactions
断控型漂积体 发育水深/m 面积/km2 坡度角 几何形态 交互关系 沉积类型 1 1 470~1 910 21 7°~13° 不明显丘状 底流作用与断层活动同时发生 同沉积 2 1 290~1 660 40 14°~28° 不规则丘状 底流作用与断层活动同时发生 同沉积 3 1 230~1 480 74 7°~15° 丘状 底流作用发生在断层活动之后 后沉积 4 1 420~1 810 107 9°~17° 丘状 底流作用发生在断层活动之后 后沉积 5 1 380~2 040 32 6°~10° 不规则丘状 底流作用与断层活动同时发生 同沉积 6 1 190~1 630 40 15°~28° 不明显丘状 底流作用与断层活动同时发生 同沉积 -
[1] REBESCO M,HERNÁNDEZ-MOLINA J F,ROOIJ V D,et al. Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations[J]. Marine Geology,2014,352:111-154. doi: 10.1016/j.margeo.2014.03.011
[2] STOW D A V,HERNÁNDEZ-MOLINA F J,Llave E,et al. Bedform-velocity matrix:the estimation of deep bottom current velocity from bedform observations[J]. Geology,2009,37:327-330. doi: 10.1130/G25259A.1
[3] STOW D A V,FAUGÈRES J C,HOWE J A,et al. Bottom currents,contourites and deep-sea sediment drifts:current state-of-the-art[J]. Geological Society,2002,22:7-20.
[4] CAPELLA W,BARHOUN N,FLECKER R,et al. Palaeogeographic evolution of the late Miocene Rifian Corridor (Morocco):reconstructions from surface and subsurface data[J]. Earth-Science Reviews,2017,180:37-59.
[5] THRAN A C,DUTKIEWICZ A,SPENCE P,et al. Controls on the global distribution of contourite drifts:insights from an eddy-resolving ocean model[J]. Earth and Planetary Science Letters,2018,489:228-240. doi: 10.1016/j.jpgl.2018.02.044
[6] HERNÁNDEZ-MOLINA F J,SIERRO F J,LLAVE E,et al. Evolution of the gulf of Cadiz margin and southwest Portugal contourite depositional system:tectonic,sedimentary and paleoceanographic implications from IODP expedition 339[J]. Marine Geology,2016,377:7-39. doi: 10.1016/j.margeo.2015.09.013
[7] CHEN H,XIE X N,ZHANG W Y,et al. Deep-water sedimentary systems and their relationship with bottom currents at the intersection of Xisha Trough and Northwest Sub-Basin,South China Sea[J]. Marine Geology,2016,378:101-113. doi: 10.1016/j.margeo.2015.11.002
[8] PREU B,SCHWENK T,HERNÁNDEZ-MOLINA F J,et al. Sedimentary growth pattern on the northern Argentine slope:the impact of North Atlantic deep water on southern hemisphere slope architecture[J]. Marine Geology,2012,329/331:113-125. doi: 10.1016/j.margeo.2012.09.009
[9] LLAVE E,HERNÁNDEZ-MOLINA F J,GARCÍA M,et al. Contourites along the Iberian continental margins:conceptual and economic implications[J]. Geological Society,2019,476:403-436.
[10] LIU S,ROOIJ V D,VANDORPE T,et al. Morphological features and associated bottom-current dynamics in the Le Danois Bank region (southern Bay of Biscay,NE Atlantic):a model in a topographically constrained small basin[J]. Deep Sea Research Part I:Oceanographic Research Papers,2019,149:103054. doi: 10.1016/j.dsr.2019.05.014
[11] FLECKER R,KRIJGSMAN W,CAPELLA W,et al. Evolution of the Late Miocene Mediterranean–Atlantic gateways and their impact on regional and global environmental change[J]. Earth-Science Reviews,2015,150:365-392. doi: 10.1016/j.earscirev.2015.08.007
[12] PÉREZ L F,HERNÁNDEZ-MOLINA F J,LODOLO E,et al. Oceanographic and climatic consequences of the tectonic evolution of the southern Scotia Sea basins,Antarctica[J]. Earth-Science Reviews,2019,198:102922. doi: 10.1016/j.earscirev.2019.102922
[13] CERAMICOLA S,REBESCO M,BATIST D M,et al. Seismic evidence of small-scale lacustrine drifts in Lake Baikal (Russia)[J]. Marine Geophysical Researches,2001,22(5/6):445-464. doi: 10.1023/A:1016351700435
[14] MALDONADO A,BARNOLAS A,BOHOYO F,et al. Miocene to Recent contourite drifts development in the northern Weddell Sea[J]. Global and Planetary Change,2005,45:99-129. doi: 10.1016/j.gloplacha.2004.09.013
[15] 谢强,肖劲根,王东晓,等. 基于8个准全球模式模拟的南海深层与底层环流特征分析[J]. 科学通报,2013,58(20):1984-1996.
[16] 王东晓,肖劲根,舒业强,等. 南海深层环流与经向翻转环流的研究进展[J]. 中国科学:地球科学,2016,46(10):480-486.
[17] 雷振宇,张莉,苏明,等. 南海南部北康盆地中中新世深水沉积体类型、特征及意义[J]. 海洋地质与第四纪地质,2017,37(6):110-118.
[18] 王嘹亮,吴能友,周祖翼,等. 南海西南部北康盆地新生代沉积演化史[J]. 中国地质,2002,29(1):96-102. doi: 10.3969/j.issn.1000-3657.2002.01.016
[19] 张莉,王嘹亮,易海. 北康盆地的形成和演化[J]. 中国海上油气(地质),2003,17(4):245-248.
[20] HUTCHISON C S. Marginal basin evolution:the southern South China Sea[J]. Marine and Petroleum Geology,2004,21:1129-1148. doi: 10.1016/j.marpetgeo.2004.07.002
[21] 帅庆伟,张莉,雷振宇,等. 北康盆地主要地质界面时代确定及油气地质意义[J]. 海洋地质前沿,2020,36(10):32-41.
[22] MADON M,KIM C L,WONG R. The structure and stratigraphy of deepwater Sarawak,Malaysia:implications for tectonic evolution[J]. Journal of Asian Earth Sciences,2013,76:312-333. doi: 10.1016/j.jseaes.2013.04.040
[23] 骆帅兵, 王笑雪, 张莉, 等.南海南部北康-曾母盆地早中新世层序内部优质砂岩精细刻画[J]. 海洋地质与第四纪地质, 2020, 40(2): 111-123.
[24] LIU S,HERNÁNDEZ-MOLINA F J,LEI Z,et al. Fault-controlled contourite drifts in the southern South China Sea:tectonic,oceanographic,and conceptual implications[J]. Marine Geology,2021,433:106420. doi: 10.1016/j.margeo.2021.106420
-