Quantitative evaluation of fault lateral sealing capacity in strike-slip-extension fault block area of Bohai Sea
-
摘要:
渤海海域受郯庐走滑断裂带控制,发育独特的走滑-伸展复合断裂体系,形成了大量的复杂断块圈闭,传统方法难以定量评价断层的真实侧封能力。为此,以辽东湾坳陷旅大A区为例,在测井识别断层破碎带基础上,利用声波时差法判断断层力学性质,提出应力系数λ定量修正断层性质对侧封能力的影响,最终利用一种简化后的断-储排替压差法定量评价断层真实侧封能力,对断块油柱高度进行定量预测。
Abstract:Controlled by the Tanlu strike-slip fault zone, a unique strike-slip and extensional composite fault system is developed in the Bohai Sea area, from which a large number of complex fault block traps was formed. At present, it is difficult to quantitatively evaluate the true lateral sealing ability of faults by traditional methods. The mechanical properties of the faults are so complex that the capacity of side sealing is difficult to be quantitatively evaluated. Therefore, using the Lvda A area of Liaodong Bay depression as an example, on the basis of logging identification of fault fracture zone, interval transit time was used to judge fault mechanical properties. The stress coefficient λ was proposed to quantitatively correct the influence of fault properties on lateral sealing ability. Finally, a simplified fault-reservoir displacement pressure difference method was used to quantitatively evaluate the true lateral sealing ability of fault blocks, and to quantitatively predict the height of oil column of fault blocks.
-
-
表 1 断层破碎带结构特征表
Table 1. Characteristics of the fault fracture zones
断层 穿过
断层井断层破碎带
结构深度范围/m ∆Xi均值 Fdr均值 RMSF DEN DT F1 LDA-4 派生裂缝 1 535~1 560 0.121 0.010 0.024 0.77 断面充填物 1 560~1 570 0.037 0.005 0.010 0.72 派生裂缝 1 570~1 603 0.055 0.006 0.012 0.83 F2 LDA-4 派生裂缝 2 555~2 625 0.148 0.006 0.016 0.49 断面充填物 2 625~2 636 0.105 0.004 0.015 0.40 派生裂缝 2 636~2 675 0.160 0.009 0.017 0.53 F3 LDA-1 派生裂缝 1 964~1 978 0.110 0.005 0.016 0.59 断面充填物 1 978~1 984 0.063 0.002 0.010 0.55 派生裂缝 1 984~1 991 0.121 0.009 0.027 0.64 F4 LDA-2 派生裂缝 2 553~2 577 0.135 0.005 0.016 0.48 断面充填物 2 577~2 597 0.055 0.003 0.014 0.43 派生裂缝 2 597~2 630 0.091 0.007 0.018 0.48 表 2 断-储排替压力差判断断层侧封性
Table 2. Judging fault lateral sealing by fracture reservoir displacement pressure difference
地层 顶深/m 底深/m Vsh/% θ/(°) Ts/Ma Tf/Ma SGR下限修正/% SGR/% ∆SGR/% 综合解释 东一段 1 971.4 1 973.9 38.00 70 25 15 21.66 28.93 7.27 油层 1 984.0 1 986.5 20.00 70 25 12 14.25 30.83 16.58 油层 1 993.8 1 996.6 36.43 70 25 12 25.96 40.75 14.79 油层 1 999.5 2 000.1 26.67 70 25 12 19.00 38.08 19.08 油层 2 005.6 2 006.5 61.11 68 25 12 47.69 44.40 −3.29 含油水层 2 014.8 2 016.4 45.00 68 25 12 35.12 50.67 15.55 油层 2 020.1 2 022.3 39.09 68 25 12 30.51 41.95 11.44 油层 2 054.7 2 061.1 54.69 65 26 12 50.08 40.00 −10.08 含油水层 2 068.2 2 069.9 41.76 65 26 12 38.24 51.60 13.36 油层 2 074.4 2 080.0 35.36 65 26 12 32.38 50.93 18.56 油层 2 089.3 2 097.2 37.47 65 26 12 34.31 49.33 15.02 油层 2 100.5 2 102.4 39.47 65 26 12 36.14 48.72 12.58 油水同层 2 116.1 2 117.0 61.11 65 26 12 55.96 42.67 −13.29 含油水层 2 117.8 2 122.5 54.47 65 26 12 49.87 42.67 −7.21 含油水层 2 128.7 2 131.2 50.00 65 27 12 47.54 45.87 −1.68 含油水层 2 134.9 2 136.9 46.50 60 27 12 52.31 46.93 −5.38 含油水层 2 161.5 2 163.1 48.75 60 27 12 54.84 50.80 −4.04 水层 东二上亚段 2 180.6 2183.9 38.18 60 30 12 47.73 53.33 5.61 水层 2 219.1 2 220.4 61.54 60 30 12 76.92 55.73 −21.19 水层 2 222.0 2 225.6 43.06 60 30 12 53.82 55.12 1.30 水层 2 230.4 2 231.2 43.75 60 30 12 54.69 54.45 −0.23 水层 2 231.9 2 238.4 40.62 60 30 12 50.77 53.19 −0.52 水层 2 253.7 2 255.8 48.10 60 30 12 60.12 50.67 −9.45 水层 2 256.4 2 259.4 46.00 60 30 12 57.50 47.68 −9.82 水层 2 260.5 2 266.1 45.18 60 30 12 56.47 48.43 −8.05 水层 -
[1] YIELDING G,FREEMAN B,NEEDHAM D T. Quantitative fault seal prediction[J]. AAPG Bulletin,1997,81(6):897-917.
[2] BRETAN J,PETER B,GRAHAM Y. Using calibrated shale gouge ratio to estimate hydrocarbon column heights[J]. AAPG Bulletin,2003,87(3):397-413. doi: 10.1306/08010201128
[3] 叶青,王猛,杨朝强,等. 珠江口盆地琼海凸起文昌A区断层侧向封闭性综合评价[J]. 海相油气地质,2018,23(4):81-86. doi: 10.3969/j.issn.1672-9854.2018.04.009
[4] 童亨茂. 断层开启与封闭的定量分析[J]. 石油与天然气地质,1988,19(3):215-220.
[5] 张立宽,罗晓容,宋国奇,等. 油气运移过程中断层启闭性的量化表征参数评价[J]. 石油学报,2013,34(1):92-100. doi: 10.7623/syxb201301010
[6] 吕延防,王伟,胡欣蕾,等. 断层侧向封闭性定量评价方法[J]. 石油勘探与开发,2016,43(2):310-316.
[7] 付广,王浩然,胡欣蕾. 断层垂向封闭的断-储排替压力差法及其应用[J]. 石油学报,2014,35(4):685-691. doi: 10.7623/syxb201404008
[8] 余一欣,周心怀,徐长贵,等. 渤海海域新生代断裂发育特征及形成机制[J]. 石油与天然气地质,2011,32(2):273-279. doi: 10.11743/ogg20110216
[9] 万桂梅,汤良杰,周心怀,等. 渤海海域新近纪—第四纪断裂特征及形成机制[J]. 石油学报,2010,31(4):591-595. doi: 10.7623/syxb201004012
[10] 李伟,任健,刘一鸣,等. 辽东湾坳陷东部新生代构造发育与成因机制[J]. 地质科技情报,2015,34(6):58-64.
[11] 付锁堂,马达德,郭召杰,等. 柴达木走滑叠合盆地及其控油气作用[J]. 石油勘探与开发,2015,42(6):712-722.
[12] 吴李泉,曹代勇,郝银全,等. 东营凹陷北部陡坡带断层应力封闭研究[J]. 中国矿业大学学报,2006,35(3):414-418. doi: 10.3321/j.issn:1000-1964.2006.03.025
[13] 徐守余,李学艳. 胜利油田东营凹陷中央隆起带断层封闭模式研究[J]. 地质力学学报,2005,11(1):19-24. doi: 10.3969/j.issn.1006-6616.2005.01.003
[14] 刘玉梅,杨桂茹,武国华. 利用声波时差测井信息定性判断断层封闭性[J]. 大庆石油学院学报,2009,33(2):6-9.
[15] 刘伟,朱留方,许东晖,等. 断裂带结构单元特征及其测井识别方法研究[J]. 测井技术,2013,37(5):495-498. doi: 10.3969/j.issn.1004-1338.2013.05.008
[16] 金强,周进峰,王端平,等. 断层破碎带识别及其在断块油田开发中的应用[J]. 石油学报,2012,33(1):82-89. doi: 10.7623/syxb201201010
[17] 罗胜元,何生,王浩. 断层内部结构及其对封闭性的影响[J]. 地球科学进展,2012,27(2):154-164.
[18] 李虹霖,吴奎,张如才,等. 辽中南洼西斜坡断-盖耦合类型及其控藏作用:以旅大A油田为例[J]. 断块油气田,2017,27(2):137-141.
[19] 付晓飞,许鹏,魏长柱,等. 张性断裂带内部结构特征及油气运移和保存研究[J]. 地学前缘,2012,19(6):200-212.
[20] 王珂,戴俊生. 地应力与断层封闭性之间的定量关系[J]. 石油学报,2012,33(1):74-81. doi: 10.7623/syxb201201009
[21] 许顺山,彭华,Angel F,等. 里德尔剪切的组合型式与走滑盆地组合型式的相似性[J]. 地质论评,2017,63(2):287-301. doi: 10.16509/j.georeview.2017.02.003
[22] 宋国奇,向立宏,郝雪峰,等. 运用排替压力法定量预测断层侧向封闭能力:以济阳坳陷为例[J]. 油气地质与采收率,2011,18(1):1-3. doi: 10.3969/j.issn.1009-9603.2011.01.001
[23] 汪晓萌,李慧勇,茆利,等. 曹妃甸21-3构造馆陶组断层封闭性研究[J]. 断块油气田,2015,22(4):458-463.
[24] 付广,宿碧霖,历娜. 一种利用断层岩泥质含量判断断层侧向封闭性的方法及其应用[J]. 岩性油气藏,2016,28(2):101-106. doi: 10.3969/j.issn.1673-8926.2016.02.014
-