-
摘要:
在被动大陆边缘形成过程中,沉积过程会促进岩石圈挠曲均衡调整和产生沉积热披覆效应,影响大陆边缘结构和热演化过程,是被动大陆边缘伸展破裂机制研究和油气盆地烃源岩演化的重要控制因素。本文总结了被动大陆边缘构造热演化研究进展,分析了沉积过程对其构造热演化的影响。多种地质证据表明,沉积-剥蚀过程会通过调整裂谷体系中的负载分布和地壳后续变形等,对裂谷断层发育、大陆边缘形态及对称性、裂后异常构造沉降和岩浆作用等有重要影响。然而,目前被动大陆边缘形成过程数值模拟研究仍较少考虑二维(2D)或三维(3D)剥蚀-沉积过程,不能较好地恢复沉积盆地热史和生烃史。通过耦合2D或3D沉积过程的岩石圈构造演化模型,可以对被动大陆边缘构造热演化带来新的、全面的认识。
Abstract:Tectono-thermal modelling is one of the key means in exploring the continental rifted margins. During rifting, erosion and sedimentation will modulate the distribution of loading and deformation of the crust, and thus influence the tectono-thermal evolution of passive continental margins. Surface processes are important controlling factors of rifting process and the evolution of hydrocarbon source rocks in oil and gas basins. We summarized the tectono-thermal evolution of passive continental margins, and showed two mechanism of the impact of surface processes: flexural isostatic balance of the lithosphere and thermal blanketing effect of sediments. Multiple-sourced geological evidence suggests that the surface process has a significant impact on the development of rift faults, the morphology and symmetry of continental margins, post-rift anomalous tectonic subsidence, and magmatism, by adjusting the load distribution and subsequent crustal deformation in the rift system. However, current numerical modeling studies on the formation of passive continental margins still rarely consider 2D or 3D surface processes, which limits their ability to accurately reconstruct the thermal history and hydrocarbon generation history of sedimentary basins. By coupling the lithospheric tectonic evolution model with 2D or 3D surface processes, a new and comprehensive understanding of the tectono-thermal evolution of passive continental margins can be brought.
-
Key words:
- passive continental margins /
- rifted margins /
- surface processes /
- numerical modelling
-
-
[1] PEPPER A S,CORVI P J. Simple kinetic models of petroleum formation. Part I:oil and gas generation from kerogen[J]. Marine and Petroleum Geology,1995,12(3):291-319. doi: 10.1016/0264-8172(95)98381-E
[2] MCBRIDE E F. Quartz cement in sandstones:a review[J]. Earth-Science Reviews,1989,26(1/3):69-112.
[3] HOWER J,ESLINGER E V,HOWER M E,et al. Mechanism of burial metamorphism of argillaceous sediment:1. mineralogical and chemical evidence[J]. Geological Society of America Bulletin,1976,87(5):868.
[4] MCKENZIE D. Some remarks on the development of sedimentary basins[J]. Earth and Planetary Science Letters,1978,40(1):25-32. doi: 10.1016/0012-821X(78)90071-7
[5] HUISMANS R,BEAUMONT C. Depth-dependent extension,two-stage breakup and cratonic underplating at rifted margins[J]. Nature,2011,473(7345):74-78. doi: 10.1038/nature09988
[6] BRUNE S,HEINE C,PÉREZ-GUSSINYÉ M,et al. Rift migration explains continental margin asymmetry and crustal hyper-extension[J]. Nature Communications,2014,5(1):1-9.
[7] KOOPMANN H,BRUNE S,FRANKE D,et al. Linking rift propagation barriers to excess magmatism at volcanic rifted margins[J]. Geology,2014,42(12):1071-1074. doi: 10.1130/G36085.1
[8] COCHRAN J R. Effects of finite rifting times on the development of sedimentary basins[J]. Earth and Planetary Science Letters,1983,66:289-302. doi: 10.1016/0012-821X(83)90142-5
[9] JARVIS G T,MCKENZIE D P. Sedimentary basin formation with finite extension rates[J]. Earth and Planetary Science Letters,1980,48(1):42-52. doi: 10.1016/0012-821X(80)90168-5
[10] WAPLES D W. A new model for heat flow in extensional basins:radiogenic heat,asthenospheric heat,and the McKenzie model[J]. Natural Resources Research,2001,10(3):227-238. doi: 10.1023/A:1012521309181
[11] WERNICKE B. Low-angle normal faults in the Basin and Range Province:nappe tectonics in an extending orogen[J]. Nature,1981,291(5817):645-648. doi: 10.1038/291645a0
[12] WERNICKE B. Uniform-sense normal simple shear of the continental lithosphere[J]. Canadian Journal of Earth Sciences,1985,22(1):108-125. doi: 10.1139/e85-009
[13] WERNICKE B,BURCHFIEL B C. Modes of extensional tectonics[J]. Journal of Structural Geology,1982,4(2):105-115. doi: 10.1016/0191-8141(82)90021-9
[14] WEISSEL J K,KARNER G D. Flexural uplift of rift flanks due to mechanical unloading of the lithosphere during extension[J]. Journal of Geophysical Research:Solid Earth,1989,94(B10):13919-13950. doi: 10.1029/JB094iB10p13919
[15] EBINGER C J,GARRY D K,JEFFREY K W. Mechanical strength of extended continental lithosphere:constraints from the western rift system,East Africa[J]. Tectonics,1991,10(6):1239-1256. doi: 10.1029/91TC00579
[16] BOILLOT G,MALOD J. The north and north-west Spanish continental margin:a review[J]. Revista de la Sociedad Geológica de España,1988,1(3/4):295-316.
[17] DRISCOLL M D,SATHYA G,MUYAN M,et al. Sequence requirements for estrogen receptor binding to estrogen response elements[J]. Journal of Biological Chemistry,1998,273(45):29321-29330. doi: 10.1074/jbc.273.45.29321
[18] CLIFT P D,BRUNE S,QUINTEROS J. Climate changes control offshore crustal structure at South China Sea continental margin[J]. Earth and Planetary Science Letters,2015,420:66-72. doi: 10.1016/j.jpgl.2015.03.032
[19] KARNER G D,DRISCOLL N W,BARKER D H N. Syn-rift regional subsidence across the West African continental margin:the role of lower plate ductile extension[J]. Geological Society,2003,207(1):105-129. doi: 10.1144/GSL.SP.2003.207.6
[20] ZHAO Z X,SUN Z,LIU J B,et al. The continental extension discrepancy and anomalous subsidence pattern in the western Qiongdongnan Basin,South China Sea[J]. Earth and Planetary Science Letters,2018,501:180-191. doi: 10.1016/j.jpgl.2018.08.048
[21] ETHERIDGE M A,Symonds P A,Lister G S. Application of the detachment model to reconstruction of conjugate passive margins:chapter 3:concepts[M]//TANKARD A J,BALKWILL H R. Extensional Tectonics and Stratigraphy of the North Atlantic Margins. AAPG Memoir 46,1989:23-40.
[22] LISTER G S,ETHERIDGE M A,Symonds P A. Detachment models for the formation of passive continental margins[J]. Tectonics,1991,10(5):1038-1064. doi: 10.1029/90TC01007
[23] KEEN C,PEDDY C,VOOGD B D,et al. Conjugate margins of Canada and Europe:results from deep reflection profiling[J]. Geology,1989,17(2):173-176. doi: 10.1130/0091-7613(1989)017<0173:CMOCAE>2.3.CO;2
[24] 何丽娟. 沉积盆地构造热演化模拟的研究进展[J]. 地球科学进展,2000,15(6):661-665. doi: 10.3321/j.issn:1001-8166.2000.06.007
[25] ENGLAND P. Constraints on extension of continental lithosphere[J]. Journal of Geophysical Research:Solid Earth,1983,88(B2):1145-1152. doi: 10.1029/JB088iB02p01145
[26] KUSZNIR N J,PARK R G. The extensional strength of the continental lithosphere:its dependence on geothermal gradient,and crustal composition and thickness[J]. Geological Society,1987,28(1):35-52. doi: 10.1144/GSL.SP.1987.028.01.04
[27] SONDER L J,ENGLAND P C. Effects of a temperature-dependent rheology on large-scale continental extension[J]. Journal of Geophysical Research:Solid Earth,1989,94(B6):7603-7619. doi: 10.1029/JB094iB06p07603
[28] BUCK W R. Modes of continental lithospheric extension[J]. Journal of Geophysical Research:Solid Earth,1991,96(B12):20161-20178. doi: 10.1029/91JB01485
[29] BASSI G,KEEN C E,POTTER P. Contrasting styles of rifting:models and examples from the eastern Canadian margin[J]. Tectonics,1993,12(3):639-655. doi: 10.1029/93TC00197
[30] GOVERS R,WORTEL M J R. Initiation of asymmetric extension in continental lithosphere[J]. Tectonophysics,1993,223(1/2):75-96.
[31] GOVERS R,WORTEL M J R. Extension of stable continental lithosphere and the initiation of lithospheric scale faults[J]. Tectonics,1995,14(4):1041-1055. doi: 10.1029/95TC00500
[32] BOUTILIER R R,KEEN C E. Geodynamic models of fault‐controlled extension[J]. Tectonics,1994,13(2):439-454. doi: 10.1029/93TC02942
[33] BRUNE S,HEINE C,CLIFT P D,PÉREZ-GUSSINYÉ M. Rifted margin architecture and crustal rheology:reviewing Iberia-Newfoundland,central South Atlantic,and South China Sea[J]. Marine and Petroleum Geology,2017,79:257-281. doi: 10.1016/j.marpetgeo.2016.10.018
[34] ELDHOLM O,COFFIN M F. Large igneous provinces and plate tectonics[J]. Geophysical Monograph-American Geophysical Union,2000,121:309-326.
[35] BUROV E,POLIAKOV A. Erosion and rheology controls on synrift and postrift evolution:verifying old and new ideas using a fully coupled numerical model[J]. Journal of Geophysical Research:Solid Earth,2001,106(B8):16461-16481. doi: 10.1029/2001JB000433
[36] BOILLOT G,FROITZHEIM N. Non-volcanic rifted margins,continental break-up and the onset of sea-floor spreading:some outstanding questions[J]. Geological Society,London,Special Publications,2001,187(1):9-30. doi: 10.1144/GSL.SP.2001.187.01.02
[37] DAVIS M,KUSZNIR N J. Depth-dependent lithospheric stretching at rifted continental margins[J]. Proceedings of NSF Rifted Margins Theoretical Institute,2004,136:92-137.
[38] MANATSCHAL G. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps[J]. International Journal of Earth Sciences,2004,93(3):432-466.
[39] HUISMANS R S,BEAUMONT C. Effect of lithospheric stratification on extensional styles and rift basin geometry[C]//Petroleum Systems of Divergent Margin Basins. Houston,Texas:25th Gulf Coast Section,Society Sedimentary Geology,Bob F. Perkins Research Conference,2005:4-7.
[40] PÉREZ-GUSSINYÉ M,MORGAN J P,RESTON T J,et al. The rift to drift transition at non-volcanic margins:insights from numerical modelling[J]. Earth and Planetary Science Letters,2006,244(1/2):458-473.
[41] LAVIER L L,MANATSCHAL G. A mechanism to thin the continental lithosphere at magma-poor margins[J]. Nature,2006,440(7082):324-328. doi: 10.1038/nature04608
[42] KARNER G D,GAMBÔA L A P. Timing and origin of the South Atlantic pre-salt sag basins and their capping evaporites[J]. Geological Society,London,Special Publications,2007,285(1):15-35. doi: 10.1144/SP285.2
[43] GUEYDAN F,MORENCY C,BRUN J P. Continental rifting as a function of lithosphere mantle strength[J]. Tectonophysics,2008,460(1/4):83-93.
[44] VAN AVENDONK H J,LAVIER L L,SHILLINGTON D J,et al. Extension of continental crust at the margin of the eastern Grand Banks, Newfoundland[J]. Tectonophysics,2009,468(1/4):131-148.
[45] PÉRON-PINVIDIC G,MANATSCHAL G. The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland:a new point of view[J]. International Journal of Earth Sciences,2009,98(7):1581-1597. doi: 10.1007/s00531-008-0337-9
[46] GEOFFROY L,BUROV E B,WERNER P. Volcanic passive margins:another way to break up continents[J]. Scientific reports,2015,5(1):1-12. doi: 10.9734/JSRR/2015/14076
[47] SVARTMAN DIAS A E,LAVIER L L,HAYMAN N W. Conjugate rifted margins width and asymmetry:the interplay between lithospheric strength and thermomechanical processes[J]. Journal of Geophysical Research:Solid Earth,2015,120(12):8672-8700. doi: 10.1002/2015JB012074
[48] DURETZ T,PETRI B,MOHN G,et al. The importance of structural softening for the evolution and architecture of passive margins[J]. Scientific Reports,2016,6(1):1-7. doi: 10.1038/s41598-016-0001-8
[49] MÜLLER R D,HASSAN R,GURNIS M,et al. Dynamic topography of passive continental margins and their hinterlands since the Cretaceous[J]. Gondwana Research,2018,53:225-251. doi: 10.1016/j.gr.2017.04.028
[50] TETREAULT J L,BUITER S J H. The influence of extension rate and crustal rheology on the evolution of passive margins from rifting to break-up[J]. Tectonophysics,2018,746:155-172. doi: 10.1016/j.tecto.2017.08.029
[51] LUNDIN E R,DORÉ A G,REDFIELD T F. Magmatism and extension rates at rifted margins[J]. Petroleum Geoscience,2018,24(4):379-392. doi: 10.1144/petgeo2016-158
[52] BUROV E,CLOETINGH S A P L. Erosion and rift dynamics:new thermomechanical aspects of post-rift evolution of extensional basins[J]. Earth and Planetary Science Letters,1997,150(1/2):7-26.
[53] PETIT C,FOURNIER M,GUNNELL Y. Tectonic and climatic controls on rift escarpments:Erosion and flexural rebound of the Dhofar passive margin (Gulf of Aden,Oman)[J]. Journal of Geophysical Research:Solid Earth,2007,112(B3).
[54] REDFIELD T F,OSMUNDSEN P T. The long-term topographic response of a continent adjacent to a hyperextended margin:a case study from Scandinavia[J]. Geological Society of America Bulletin,2013,125(1/2):184-200.
[55] ANDRÉS-MARTÍNEZ M,PÉREZ-GUSSINYÉ M,ARMITAGE J,et al. Thermomechanical implications of sediment transport for the architecture and evolution of continental rifts and margins[J]. Tectonics,2019,38(2):641-665. doi: 10.1029/2018TC005346
[56] WANGEN M. The blanketing effect in sedimentary basins[J]. Basin Research,1994,7(4):283-298.
[57] ZHANG Y. The thermal blanketing effect of sediments on the rate and amount of subsidence in sedimentary basins formed by extension[J]. Tectonophysics,1993,218(4):297-308. doi: 10.1016/0040-1951(93)90320-J
[58] THEISSEN S,RÜPKE L H. Feedbacks of sedimentation on crustal heat flow:new insights from the Vøring Basin,Norwegian Sea[J]. Basin Research,2010,22(6):976-990. doi: 10.1111/j.1365-2117.2009.00437.x
[59] DE BREMAECKER J C. Temperature,subsidence,and hydrocarbon maturation in extensional basins:a finite element model[J]. AAPG Bulletin,1983,67(9):1410-1414.
[60] TER VOORDE M,BERTOTTI G. Thermal effects of normal faulting during rifted basin formation,1. A finite difference model[J]. Tectonophysics,1994,240(1/4):133-144.
[61] RÜPKE L H,SCHMID D. W,PEREZ-GUSSINYE M,et al. Interrelation between rifting,faulting,sedimentation,and mantle serpentinization during continental margin formation-including examples from the Norwegian Sea[J]. Geochemistry,Geophysics,Geosystems,2013,14(10):4351-4369.
[62] TEN BRINK U S,TAYLOR M H. Crustal structure of central Lake Baikal:insights into intracontinental rifting[J]. Journal of Geophysical Research:Solid Earth,2002,107(B7):ETG-2.
[63] ZONENSHAIN L P,KAZ'MIN V G,KUZMIN M I. New data on the history of the Lake Baikal:results of surveys by submersibles[J]. Geotectonics,1995,29(3):235-247.
[64] HUS R,POORT J,CHARLET F,et al. Lake Baikal[M]// ROBERTS D G,BALLY A W. Regional Geology and Tectonics:Phanerozoic Rift Systems and Sedimentary Basins. Elsevier,2012,1:258-276.
[65] HUTCHINSON D R,GOLMSHTOK A J,ZONENSHAIN L P,et al. Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data[J]. Geology,1992,20(7):589-592. doi: 10.1130/0091-7613(1992)020<0589:DATFOT>2.3.CO;2
[66] MORLEY C K. Variable extension in lake Tanganyika[J]. Tectonics,1988,7(4):785-801. doi: 10.1029/TC007i004p00785
[67] OLIVE J A,BEHN M D,MALATESTA L C. Modes of extensional faulting controlled by surface processes[J]. Geophysical Research Letters,2014,41(19):6725-6733. doi: 10.1002/2014GL061507
[68] BUITER S J,HUISMANS R S,BEAUMONT C. Dissipation analysis as a guide to mode selection during crustal extension and implications for the styles of sedimentary basins[J]. Journal of Geophysical Research:Solid Earth,2008,113(B6).
[69] KIRKBY M J. Hillslope process-response models based on the continuity equation[J]. Institute of British Geographers Special Publication,1971,3(1):5-30.
[70] CARSON M A,KIRKBY M J. Hillslope Form and Process[M]. New York:Cambridge University Press,1972.
[71] HOWARD A D. A detachment-limited model of drainage basin evolution[J]. Water Resources Research,1994,30(7):2261-2285. doi: 10.1029/94WR00757
[72] DIETRICH W E,BELLUGI D G,SKLAR L S,et al. Geomorphic transport laws for predicting landscape form and dynamics[J]. Geophysical Monograph-American Geophysical Union,2003,135:103-132.
[73] WESTAWAY R. Re-evaluation of extension across the Pearl River Mouth Basin,South China Sea:implications for continental lithosphere deformation mechanisms[J]. Journal of Structural Geology,1994,16(6):823-838. doi: 10.1016/0191-8141(94)90148-1
[74] ZHAO Z X,SUN Z,WANG Z F,et al. The dynamic mechanism of post-rift accelerated subsidence in Qiongdongnan Basin,northern South China Sea[J]. Marine Geophysical Research,2013,34:295-308. doi: 10.1007/s11001-013-9188-2
[75] DRISCOLL N W,KARNER G D. Lower crustal extension across the Northern Carnarvon Basin,Australia:evidence for an eastward dipping detachment[J]. Journal of Geophysical Research:Solid Earth,1998,103(B3):4975-4991. doi: 10.1029/97JB03295
[76] LIZARRALDE D,AXEN G J,BROWN H E,et al. Variation in styles of rifting in the Gulf of California[J]. Nature,2007,448(7152):466-469. doi: 10.1038/nature06035
[77] LESCOUTRE R,TUGEND J,BRUNE S,et al. Thermal evolution of asymmetric hyperextended magma-poor rift systems:re-sults from numerical modeling and Pyrenean field observa-tions[J]. Geochemistry,Geophysics,Geosystems,2019,20(10):4567-4587.
[78] CULLING W E H. Analytical theory of erosion[J]. The Journal of Geology,1960,68(3):336-344. doi: 10.1086/626663
[79] SMITH T R,BRETHERTON F P. Stability and the conservation of mass in drainage basin evolution[J]. Water Resources Research,1972,8(6):1506-1529. doi: 10.1029/WR008i006p01506
[80] WILLGOOSE G,BRAS R L,RODRIGUEZ-ITURBE I. A coupled channel network growth and hillslope evolution model:1. Theory[J]. Water Resources Research,1991,27(7):1671-1684. doi: 10.1029/91WR00935
[81] WILLGOOSE G,BRAS R L,RODRIGUEZ-ITURBE I. A coupled channel network growth and hillslope evolution model:2. Nondimensionalization and applications[J]. Water Resources Research,1991,27(7):1685-1696. doi: 10.1029/91WR00936
[82] KOOI H,BEAUMONT C. Large‐scale geomorphology:classical concepts reconciled and integrated with contemporary ideas via a surface processes model[J]. Journal of Geophysical Research:Solid Earth,1996,101(B2):3361-3386. doi: 10.1029/95JB01861
[83] VAN DER BEEK P,ANDRIESSEN P,CLOETINGH S. Morphotectonic evolution of rifted continental margins:inferences from a coupled tectonic‐surface processes model and fission track thermochronology[J]. Tectonics,1995,14(2):406-421. doi: 10.1029/94TC02445
[84] VAN BALEN R T,VAN DER BEEK P A,CLOETINGH S A P L. The effect of rift shoulder erosion on stratal patterns at passive margins:implications for sequence stratigraphy[J]. Earth and Planetary Science Letters,1995,134(3/4):527-544. doi: 10.1016/0012-821X(95)98955-L
[85] KAUFMAN P,GROTZINGER J P,MCCORMICK D S,et al. Depth-dependent diffusion algorithm for simulation of sedimentation in shallow marine depositional systems[J]. Kansas Geological Survey Bulletin,1991,233:489-508.
-