CENOZOIC FAULT CHARACTERISTICS AND BASIN GENESIS OF THE ENPING SAG, PEARL RIVER MOUTH BASIN
-
摘要:
以恩平凹陷为主要研究对象,在断裂体系及盆地结构的精细刻画的基础上,结合断层活动速率计算和平衡剖面分析,恢复盆地发育演化过程,揭示盆地动力学成因机制。结果表明,盆地的发育演化过程受基底先存构造与区域动力背景联合控制。裂陷早期:太平洋板块俯冲速率降低及俯冲带后撤与印度板块俯冲联合作用下,导致了NW—SE向拉张应力场环境,造成了早期NE向低角度逆断层负反转,形成了NE向断裂控制的拆离半地堑;裂陷晚期:印支地块旋转挤出与古南海向南俯冲联合作用下,导致应力场由NW—SE向拉张转变为近SN向拉张,造成了控盆断裂由NE向向近EW向转变,岩石圈伸展模式由宽裂谷方式向窄裂谷方式转变,造成了盆地格局由孤立半地堑趋于相互连通扩展;裂陷拗陷期:岩石圈减薄中心向南迁移至南海扩张中心,整体处于裂后热沉降阶段;构造活化期:吕宋岛弧NWW向与欧亚板块发生弧-陆碰撞作用下,产生NNE向拉张,派生近EW向和NW向的共轭剪切作用,造成了先存近EW断裂复活及次级走滑断裂带的形成,导致了复杂断块升降运动。
Abstract:Detailed description of fault systems and basin structures is devoted by this paper to the Enping Sag of the Pearl River Mouth Basin, South China Sea. The main basin controlling fault systems formed in different periods are determined and classified by means of fault activity rate calculation and equilibrium profile analysis, upon which the evolution process of the basin is reconstructed, and the dynamic mechanism of basin development and transformation discussed. The results suggest that the evolution of the basin is controlled by both the pre-existing basement structure and the regional dynamic field. During the early rifting stage, the subduction of the Pacific plate retreated as the subduction rate decreased under the joint action of Indian plate, that led to the change in stress into an extension field in NW—SE direction and the negative inversion of the early formed NE trending low angle reverse faults. As the results, a detached half graben was formed under the control of NE trending fault. During the late rifting stage, under the joint action of the rotation and extrusion of Indosinian block and the southward subduction of the paleo-South China Sea, the regional stress field changed from clockwise transformation into nearly NS stretching, and the basin controlling faults changed from NE to nearly EW trending. And the lithospheric extension was changed from a wide rift mode to a narrow rift mode as the basin framework changed from isolated half grabens to connected extensional grabens. During the depression period, the lithospheric thinning center migrated towards the South China Sea spreading center, leading to weak tectonic activity and thermal subsidence. In the tectonic reactivation stage, the NW trending Luzon island arc collided with the Eurasian plate, which caused the NNE stretching, the revival of pre-existing near EW faults and the formation of the secondary strike slip fault zone, in addition to complex uplifting and falling of fault blocks.
-
Key words:
- genetic mechanism /
- basin evolution /
- fault characteristics /
- Cenozoic /
- Enping Sag /
- Pearl River Mouth Basin
-
-
[1] 吴智平,李伟,任拥军,等. 济阳坳陷中生代盆地演化及其与新生代盆地叠合关系探讨[J]. 地质学报,2003,77(2):280-286. doi: 10.3321/j.issn:0001-5717.2003.02.017
[2] 陈长民, 施和生, 许仕策, 等. 珠江口盆地(东部)第三系油气藏形成条件[M]. 北京: 科学出版社, 2003, 1-20.
[3] 胡阳,吴智平,钟志洪,等. 珠一坳陷新生代断裂体系特征及其转型机制[J]. 地质科学,2016,51(2):495-508.
[4] 许新明,陈胜红,王福国,等. 珠江口盆地恩平凹陷断层特征及其对新近系油气成藏的影响[J]. 现代地质,2014,28(3):543-550. doi: 10.3969/j.issn.1000-8527.2014.03.011
[5] 王家豪,刘丽华, 陈胜红, 等. 珠江口盆地恩平凹陷珠琼运动二幕的构造-沉积响应及区域构造意义[J]. 石油学报,2011,32(4):589-594.
[6] 刘强虎. 断陷盆地低角度正断层控制下层序构型及其定量模拟: 以恩平凹陷古近系文昌组为例[D]. 武汉: 中国地质大学(武汉), 2013.
[7] 许新明,刘贤来,陈胜红,等. 张扭性断陷盆地构造样式与油气成藏的关系:以珠江口盆地恩平凹陷新生界为例[J]. 海洋地质前沿,2015,31(1):31-36.
[8] 曾智伟,杨香华,舒誉,等. 恩平凹陷北部陡坡带文昌组砂砾岩体发育特征及构造沉积响应[J]. 地质科技情报,2014,33(6):60-68.
[9] 龚丽,朱红涛,舒誉,等. 珠江口盆地恩平凹陷文昌组层序格架中中-深湖相烃源岩空间展布规律及发育模式[J]. 地球科学,2014,39(5):547-550.
[10] 傅宁,丁放,何仕斌,等. 珠江口盆地恩平凹陷烃源岩评价及油气成藏特征分析[J]. 中国海上油气,2007,19(5):296-299.
[11] 刘丽华,陈胜红,于水明,等. 恩平凹陷成藏条件分析及商业性突破[J]. 中国海上油气,2011,23(2):77-80.
[12] 刘培,于水明,王福国,等. 珠江口盆地恩平凹陷海相泥岩盖层有效性评价及应用[J]. 天然气地球科学,2017,28(3):452-459.
[13] 许新明,姜建,陈胜红,等. 珠江口盆地恩平凹陷断层封闭性评价[J]. 现代地质,2016,30(1):122-129. doi: 10.3969/j.issn.1000-8527.2016.01.013
[14] 陈胜红,米立军,施和生,等. 海上一体化地震勘探技术在珠江口盆地东部恩平凹陷油气勘探中的应用[J]. 成都理工大学学报(自然科学版),2016,43(4):462-465.
[15] 赵淑娟,吴时国,施和生,等. 南海北部东沙运动的构造特征及动力学机制探讨[J]. 地球物理学进展,2012,27(3):1016-1017.
[16] 钟志洪,施和生,朱明,等. 珠江口盆地构造-地层格架及成因机制探讨[J]. 中国海上油气,2014,26(5):21-24.
[17] MORLEY C K, HARANYA C, PHOOSONGSEE W, et al. Activation of rift oblique and rift parallel pre-existing fabrics during extension and their effect on deformation style: examples from the rifts of Thailand[J]. Journal of Structural Geology,2004,26(10):1803-1829. doi: 10.1016/j.jsg.2004.02.014
[18] 童亨茂,聂金英,孟令箭,等. 基底先存构造对裂陷盆地断层形成和演化的控制作用规律[J]. 地学前缘,2009,16(4):100-104.
[19] 詹润,朱光. 济阳坳陷青东凹陷基底断裂复活规律和方式[J]. 地质论评,2012,58(5):816-828. doi: 10.3969/j.issn.0371-5736.2012.05.003
[20] 朱光,姜芹芹,朴学峰,等. 基底断层在断陷盆地断层系统发育中的作用:以苏北盆地南部高邮凹陷为例[J]. 地质学报,2013,87(4):441-452. doi: 10.3969/j.issn.0001-5717.2013.04.001
[21] ENGEBRETSON D C,COX A,GORDON R G. Relative motions between oceanic and continental plates in the Pacific basin[J]. Geological Society of America Special Papers,1985,206:1-60.
[22] 庞雄, 陈长民, 彭大钧, 等. 南海珠江深水扇系统及油气[M]. 北京: 科学出版社, 2007, 49-50.
[23] 包汉勇,郭战峰,张罗磊,等. 太平洋板块形成以来的中国东部构造动力学背景[J]. 地球科学进展,2013,28(3):339-345.
[24] BUCK W R. Modes of continental lithospheric extension[J]. Journal of Geophysical Research:Solid Earth (1978–2012),1991,96(B12):20165-20170.
[25] 任建业,解习农. 大陆裂陷作用及盆地发育系统[J]. 地质科技情报,1996,15(4):26-32.
[26] TAPPONNIER P, LACASSIN R,LELOUP P H,et al. The Ailao Shan-Red River metamorphic belt: tertiary left lateral shear between Indochina and South China[J]. Nature,1990,343(6257):431-437.
[27] MORLEY C K. A tectonic model for the Tertiary evolution of strike–slip faults and rift basins in SE Asia[J]. Tectonophysics,2002,347(4):189-215. doi: 10.1016/S0040-1951(02)00061-6
[28] 孙珍,钟志洪,周蒂,等. 南海的发育机制研究:相似模拟证据[J]. 中国科学D辑,2006,36(6):797-810.
[29] 张亮. 南海构造演化模式及其数值模拟[D]. 青岛: 中国科学院研究生院(海洋研究所), 2012.
[30] 吴福元,孙德有, 张广良,等. 论燕山运动的深部地球动力学本质[J]. 高校地质学报,2000,6(3):379-388. doi: 10.3969/j.issn.1006-7493.2000.03.002
[31] HALL R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean[J]. Tectonophysics,2012,570(11):26-30.
[32] 范建柯. 菲律宾海板块西边缘的地震层析成像研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2013.
[33] 耿威,张训华,温珍河,等. 台湾东部海岸山脉对弧陆碰撞的响应[J]. 地质论评,2013,59(1):130-135.
-