Application of Poisson impedance for identification of sweet spot in the Paleogene low-permeability sandstone reservoir in Lufengnan Sag
-
摘要:
陆丰南地区古近系储层纵横向非均质性较强,沉积成岩演化复杂,寻找具有经济产能的“甜点”储层是古近系高效勘探的关键。基于岩石物理分析及坐标旋转明确了泊松阻抗为识别“甜点”储层最敏感的弹性参数。在协克里金低频建模基础上,开展叠前弹性参数反演直接获得了相关弹性参数(纵波速度vp、横波速度vs和密度ρ),进而构建了泊松阻抗等弹性参数数据体并以此为基础开展砂岩储层及“甜点”储层的定量解释及预测。反演结果表明,目标层文昌组“甜点”储层分布明显受沉积相带的控制,岩性主要为水下分流河道沉积微相砂岩,沉积相特征与钻井资料吻合。此技术方法的应用可实现古近系“甜点”储层由定性到定量的转变,提高了古近系深层勘探成功率,为古近系“增储上产”提供了有力的支撑。
Abstract:The lateral heterogeneity of Paleogene reservoirs in the Lufengnan Sag of the Pearl River Mouth Basin is obvious, and the sedimentary and diagenetic evolution is complex. Finding “sweet spot” reservoir with economic productivity is the key to efficient exploration of the Paleogene reservoir. Based on petrophysical analysis and coordinate rotation, it is clear that Poisson impedance is the most sensitive elastic parameter to identify “sweet spot” reservoir. By the Co-Kriging low-frequency modeling, the prestack elastic parameter inversion was carried out, from which and the relevant elastic parameters were obtained directly, and then the elastic parameter dataset including Poisson impedance was constructed, based on which the quantitative interpretation and prediction of sandstone reservoir and "sweet spot" reservoir were performed. The inversion results show that the distribution of the “sweet spot” reservoir of Wenchang Formation is obviously controlled by the sedimentary facies. The lithology is mainly microfacies sandstone indicative of underwater distributary channel, and the characteristics of sedimentary facies are consistent with the drilling data. The application of this technology and method can realize the transformation of Paleogene “sweet spot” reservoir exploration from qualitative to quantitative determination, improve the success rate of deep exploration in the Paleogene, and provide a strong support for increasing reserves and production in the Paleogene.
-
Key words:
- Paleogene /
- sweet spot /
- Co-Kriging modeling /
- Poisson impedance /
- prestack elastic parameter inversion /
- Lufengnan Sag
-
-
表 1 陆丰凹陷南部古近系文昌组储层分类评价
Table 1. Reservoir classification and evaluation of the Paleogene Wenchang Formation in the southern Lufeng Sag
储层分类 Ⅰ Ⅱ Ⅲ 物性特征 φ/% >11 8~11 <8 K/(10−3 µm2) >10 4~10 0.1~4 孔隙
特征平均孔径/μm >7 1~2 0.4~1 孔隙类型 原生粒间孔-溶孔 溶孔 -
[1] GAUTIER D L,MAST R F. US geological survey methodology for the 1995 national assessment[J]. AAPG Bulletin,1995,78(1):1-10.
[2] 米立军,张向涛,陈维涛,等. 珠江口盆地珠一坳陷古近系油气富集规律及下一步勘探策略[J]. 中国海上油气,2018,30(6):1-13.
[3] 张向涛,汪旭东,舒誉,等. 珠江口盆地陆丰凹陷大中型油田地质特征及形成条件[J]. 中南大学学报(自然科学版),2017,48(11):2979-2989.
[4] 汪旭东,张向涛,林鹤鸣,等. 珠江口盆地陆丰13洼复式油气成藏条件、分布规律及勘探潜力[J]. 中国海上油气,2018,30(3):19-27.
[5] OSTRANDER W J. Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence[J]. Geophysics,1984,49(10):1637-1648. doi: 10.1190/1.1441571
[6] 王振涛,王玉梅,慎国强,等. 叠前高精度反演方法在复杂岩性储层预测中的应用[J]. 油气地球物理,2020,18(1):9-15.
[7] 李坤,印兴耀,宗兆云. 岩石物理驱动的相约束叠前地震概率化反演方法[J]. 中国科学:地球科学,2020,50(6):124-146.
[8] 马光克,李洋森,黄玉,等. 基于岩石物理正演分析的低渗储层叠前反演方法研究[J]. 地球物理学进展,2019,34(1):347-353. doi: 10.6038/pg2019BB0455
[9] GOODWAY B. Improved AVO fluid detection and lithology discrimination using Lamé petrophysical parameters; “λρ”,“μρ”,&“λ/μ fluid stack”,from P and S inversions[J]. SEG Technical Program Expanded Abstracts,1997,16(1):183-186.
[10] RUSSELL B H,Hedlin K,Hilterman F J,et al. Fluid-property discrimination with AVO:a biot-gassmann perspective[J]. Geophysics,2003,68(1):29-39. doi: 10.1190/1.1543192
[11] QUAKENBUSH M,SHANG B,TUTTLE C. Poisson impedance[J]. Leading Edge,2006,25(2):128-138. doi: 10.1190/1.2172301
[12] MAZUMDAR. Poisson dampening factor[J]. The Leading Edge,2007,26(7):850-852. doi: 10.1190/1.2756862
[13] 孙喜新. 泊松阻抗及其在平湖砂岩气藏检测中的应用[J]. 石油地球物理勘探,2008,43(6):699-703. doi: 10.3321/j.issn:1000-7210.2008.06.015
[14] 解吉高,刘志斌,张益明,等. 利用泊松阻抗进行油气检测[J]. 石油地球物理勘探,2013,48(2):273-278.
[15] 张林清,张会星,姜效典,等. 弹性参数反演与属性融合技术在"甜点"预测中的应用[J]. 天然气地球科学,2017,28(4):8.
[16] 刘力辉,李建海,刘玉霞. 地震物相分析方法与“甜点”预测[J]. 石油物探,2013,52(4):432-437. doi: 10.3969/j.issn.1000-1441.2013.04.014
[17] 韩刚,高红艳,龙凡,等. 叠前反演在西湖凹陷致密砂岩储层“甜点”预测中的应用[J]. 石油物探,2021,60(3):471-478. doi: 10.3969/j.issn.1000-1441.2021.03.013
[18] LINDSETH R O. Synthetic sonic logs-a process for stratigraphic interpretation[J]. Geophysics,1979,44(1):62-67.
[19] WYLLIE M R J,GREGORY A R,GARDNER L W. Elastic wave velocities in heterogeneous and porous media[J]. Geophysics,1956,21(1):41-70. doi: 10.1190/1.1438217
[20] DUBRULE O,THIBAUT M,LAMY P,et al. Geostatistical reservoir characterization constrained by 3D seismic data[J]. Petroleum Geoscience,1998,4(2):121-128. doi: 10.1144/petgeo.4.2.121
[21] 肖张波. 地震数据约束下的贝叶斯随机反演方法研究[D]. 青岛: 中国石油大学(华东), 2013.
[22] AKI K I, RICHARDS P G. Quantitative seismology: theory and methods[M]. California: W H Freeman and Co. , San Francisco, 1980.
[23] DILLON L,SCHWEDERSKY G,VASQUEZ G,et al. A multiscale DHI elastic attributes evaluation[J]. The Leading Edge,2003,22(10):1024,1026-1029.
-