西盘古海盆锰结核的元素地球化学特征及生长机制

杨叶飘, 韩宗珠, 来志庆, 龙时迈, 顾伟, 窦连想. 西盘古海盆锰结核的元素地球化学特征及生长机制[J]. 海洋地质前沿, 2023, 39(9): 35-45. doi: 10.16028/j.1009-2722.2022.093
引用本文: 杨叶飘, 韩宗珠, 来志庆, 龙时迈, 顾伟, 窦连想. 西盘古海盆锰结核的元素地球化学特征及生长机制[J]. 海洋地质前沿, 2023, 39(9): 35-45. doi: 10.16028/j.1009-2722.2022.093
YANG Yepiao, HAN Zongzhu, LAI Zhiqing, LONG Shimai, GU Wei, DOU Lianxiang. Geochemical constraints on the formation mechanisms of manganese nodules from Cipangu Basin[J]. Marine Geology Frontiers, 2023, 39(9): 35-45. doi: 10.16028/j.1009-2722.2022.093
Citation: YANG Yepiao, HAN Zongzhu, LAI Zhiqing, LONG Shimai, GU Wei, DOU Lianxiang. Geochemical constraints on the formation mechanisms of manganese nodules from Cipangu Basin[J]. Marine Geology Frontiers, 2023, 39(9): 35-45. doi: 10.16028/j.1009-2722.2022.093

西盘古海盆锰结核的元素地球化学特征及生长机制

  • 基金项目: 国家自然科学基金(41376053)
详细信息
    作者简介: 杨叶飘(1998—),硕士,主要从事海洋地质方面的研究工作. E-mail:15207121940@163.com
    通讯作者: 韩宗珠(1964—),男,教授,主要从事岩石学和地球化学方面的研究工作. E-mail:hanzongzhu@ouc.edu.cn
  • 中图分类号: P736.4

Geochemical constraints on the formation mechanisms of manganese nodules from Cipangu Basin

More Information
  • 通过对西盘古海盆(Cipangu Basin)15个锰结核样品开展系统的形态结构、显微构造、矿物组成、常微量元素和稀土元素含量特征差异性研究,进而探讨该区锰结核的成因类型和生长机制。西盘古海盆锰结核外观为椭球状或连生体状,表面光滑,组成矿物主要有水羟锰矿、石英、钙长石和石盐;其稀土元素配分模式图表现出明显的Ce正异常、Y负异常和轻稀土富集特征。样品Mn/Fe比值均<2.5,与Ni、Cu正相关,且Mn与Cu、Co和Ni高度正相关,这表明因Cu2+、Ni2+、Co2+更易占据层板结构锰氧八面体MnO6的空位而在锰矿物表面富集。锰结核显微构造区域可划分为Type-Ⅰ型和Type-Ⅱ型,其中Type-Ⅰ型为结构致密高反射率的层纹状、柱状、叠层状构造的显微构造区域,Type-Ⅱ型为结构疏松低反射率的掌状、混杂状、环状构造的显微构造区域;Type-Ⅰ型区域的Mn/Fe比值和Ni、Ni + Cu、Co含量均高于Type-Ⅱ型区域。构造致密的Type-Ⅰ型区域代表沉积环境变化较小,生长速率较小;构造疏松的Type-Ⅱ型区域代表沉积环境剧烈变化、结核生长速率较大。西盘古海盆锰结核具有典型的水成型成因特征,通过常微量元素测试数据估算得出西盘古海盆锰结核样品的形成时间为1.48 Ma。据微区分析数据估算得出其生长年龄为2.44 Ma。

  • 加载中
  • 图 1  西盘古海盆的地理及采样位置

    Figure 1. 

    图 2  西盘古海盆锰结核样品照片

    Figure 2. 

    图 3  西盘古海盆锰结核样品核心照片

    Figure 3. 

    图 4  西盘古海盆锰结核壳体X射线粉晶衍射特征性图谱

    Figure 4. 

    图 5  西盘古海盆锰结核内部显微构造的背散射图片

    Figure 5. 

    图 6  西盘古海盆锰结核REY的PASS标准化配分模式

    Figure 6. 

    图 7  锰结核中Mn/Fe-Ni、Mn/Fe-Ni+Cu、Mn/Fe-Co的EMPA分析图

    Figure 7. 

    图 8  锰结核Mn/Fe-Al的常量分析和EMPA分析

    Figure 8. 

    图 9  Fe-Mn-(Co+Ni+Cu)×10三角图[20]

    Figure 9. 

    图 10  15×(Cu+Ni)-100×(Zr+Y+Ce)-(Fe + Mn)/4三角图[3]

    Figure 10. 

    图 11  CeSN/CeSN*与YSN/HoSN和Nd比值图[17]

    Figure 11. 

    表 1  西盘古海盆锰结核壳体常量元素和金属元素含量

    Table 1.  Macro element and metal element contents of manganese nodule from the Cipangu Basin

    %
    FeMnAl2O3CaOK2OMgONa2OP2O5TiO2BaSrCoNiCuMn/Fe
    最小值8.723.995.492.240.981.923.330.340.540.050.040.020.040.050.33
    最大值16.4619.511.083.041.82.716.640.60.860.120.070.060.430.281.45
    平均值13.8110.977.582.461.242.264.430.490.770.080.060.040.190.130.78
    下载: 导出CSV

    表 2  西盘古海盆锰结核壳体微量元素含量

    Table 2.  Trace element content in the shell of manganese nodule from the Cipangu Basin

    mg/kg
    CrVZnZrScRbNbMo
    最小值15.01192.68208.22197.111.921.0911.3727.89
    最大值35.43428.18744.25396.219.2957.0222.58309.01
    平均值23.18330.32430.47311.6414.131.4817.6141.05
    CdCsHfWTlPbThU
    最小值0.981.735.116.199.99248.423.762.46
    最大值8.574.718.1421.0446.77687.751.725.16
    平均值3.912.596.8311.0825.66519.2740.93.77
    下载: 导出CSV

    表 3  西盘古海盆锰结核稀土元素组成

    Table 3.  Rare earth elements of manganese nodules in the Cipangu Basin

    mg/kg
    LaCePrNdSmEuGdTbDyHo
    最小值90.48431.8425.5108.5825.76.1425.833.921.74.14
    最大值50.03217.413.4357.0113.033.1613.432.0611.452.22
    平均值123.5570.434.02145.734.628.2635.025.2629.645.54
    ErTmYbLuYΣREYΣCe/ΣYδCeδEuY/Ho
    最小值10.781.459.131.3566.57833.096.422.071.1216.27
    最大值5.960.835.240.7739.28435.315.531.921.0915.26
    平均值141.8711.951.885.51107.077.332.371.1517.73
    下载: 导出CSV

    表 4  西盘古海盆锰结核元素相关系数矩阵

    Table 4.  The Pearson correlation coefficient matrix for major and valuable metal elements of manganese nodule shell from the Cipangu Basin

    TFeTMnAl2O3CaOMgOK2ONa2OTi2P2O5BaCoCuNiSrREY
    TFe1
    TMn0.4991
    Al2O3−0.687-0.9191
    CaO−0.2−0.4750.5311
    MgO−0.421−0.6330.7630.5421
    K2O−0.822−0.8530.9580.3430.6861
    Na2O−0.727−0.8680.810.2920.5560.8481
    Ti2 O0.8640.335−0.3970.016−0.081−0.583−0.6461
    P2O50.9570.553−0.771−0.232−0.601−0.888−0.7150.7381
    Ba0.5550.978−0.91−0.463−0.692−0.856−0.910.3950.611
    Co0.7790.899−0.954−0.491−0.734−0.954−0.8930.5770.8340.9321
    Cu0.4440.977−0.858−0.404−0.567−0.791−0.8560.3220.490.9740.8691
    Ni0.480.977−0.873−0.451−0.609−0.807−0.8660.3570.5310.9820.8980.9931
    Sr0.8150.875−0.962−0.425−0.72−0.979−0.870.5930.870.9020.9820.8280.8521
    REY0.8620.825−0.937−0.463−0.729−0.964−0.8620.6510.9080.8640.9820.7740.8110.9881
    下载: 导出CSV

    表 5  常量分析生长速率计算

    Table 5.  Calculations of growth rate from constant analysis

    编号NWPB1NWPB2NWPB3NWPB4NWPB5NWPB6NWPB7NWPB8NWPB9
    R/(mm/Ma)0.930.981.40.91.361.461.390.980.89
    编号NWPB10NWPB11NWPB12NWPB13NWPB14NWPB15最小值最大值平均值
    R/(mm/Ma)1.942.121.122.171.11.460.892.171.35
    下载: 导出CSV

    表 6  基于全岩常量元素含量的生长年龄计算

    Table 6.  Calculations of growth age based on major elements of whole rocks

    R/(mm/Ma)厚度/mm年龄/Ma
    西盘古海盆最小值0.892.002.25
    最大值2.172.000.92
    平均值1.352.001.48
    下载: 导出CSV

    表 7  基于EPMA分析数据的生长速率计算

    Table 7.  Calculations of growth rate based on EPMA data

    样品区域结构类型Fe/%Mn/%R/(mm/Ma)
    西盘古海盆总平均最小值4.560.060.46
    最大值28.0421.291.29
    平均值15.228.70.82
    Type-Ⅰ型最小值18.7510.50.7
    最大值26.1521.291.29
    平均值22.0316.221.02
    Type-Ⅱ型最小值4.560.060.46
    最大值28.0417.521.13
    平均值10.673.690.69
    下载: 导出CSV
  • [1]

    HELLER C,KUHN T,VERSTEEGH G M,et al. The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules[J]. Deep Sea Research Part I Oceanographic Research Papers,2018,142:16-33. doi: 10.1016/j.dsr.2018.09.008

    [2]

    BAU M,KOSCHINSKY A,DULSKI P,et al. Comparison of the partitioning behaviours of yttrium,rare-earth elements,and titanium between hydrogenetic marine ferromanganese crusts and seawater[J]. Geochimica et Cosmochimica Acta,1996,60(10):1709-1725. doi: 10.1016/0016-7037(96)00063-4

    [3]

    JOSSO P,PELLETER E,POURRET O,et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements[J]. Ore Geology Reviews,2017,87:3-15. doi: 10.1016/j.oregeorev.2016.09.003

    [4]

    KUHN T,BAU M,BLUM N,et al. Origin of negative Ce anomalies in mixed hydrothermal-hydrogenetic Fe-Mn crusts from the Central Indian Ridge[J]. Earth and Planetary Science Letters,1998,163(1/4):207-220.

    [5]

    QUINN K A,BYRNE R H,SCHIJF J. Comparative savenging of Yttrium and the rare earth elements in seawater:competitive influences of solution and surface chemistry[J]. Aquatic Geochemistry,2004,10(1/2):59-80. doi: 10.1023/B:AQUA.0000038959.03886.60

    [6]

    WEGORZEWSKI A V,KUHN T. The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean[J]. Marine Geology,2014,357:123-138. doi: 10.1016/j.margeo.2014.07.004

    [7]

    PAUL S,HAECKEL M,BAU M,et al. Small-scale heterogeneity of trace metals including rare earth elements and yttrium in deep-sea sediments and porewaters of the Peru Basin,southeastern equatorial Pacific[J]. Biogeosciences,2019,16(24):4829-4849. doi: 10.5194/bg-16-4829-2019

    [8]

    GONZÁLEZ F J,SOMOZA L,HEIN J R,et al. Phosphorites,Co-rich Mn nodules,and Fe‐Mn crusts from Galicia Bank,NE Atlantic:reflections of Cenozoic tectonics and paleoceano-graphy[J]. Geochemistry,Geophysics,Geosystems,2016,17(2):346-374.

    [9]

    LI Z,LI H,HEIN J R,et al. A possible link between seamount sector collapse and manganese nodule occurrence in the abyssal plains,NW Pacific Ocean[J]. Ore Geology Reviews,2021,138:104378. doi: 10.1016/j.oregeorev.2021.104378

    [10]

    Nozaki Y. A fresh look at element distribution in the North Pacific Ocean[J]. EOS Transactions,1997,78:221-223.

    [11]

    DENG X, HE G, XU Y, et al. Oxic bottom water dominates polymetallic nodule formation around the Caiwei Guyot, northwestern Pacific Ocean[J]. Ore Geology Reviews, 2022: 104776.

    [12]

    BOLLHOFER A,FRANK N,ROHLOFF S,et al. A record of changing redox conditions in the northern Peru Basin during the Late Quaternary deduced from Mn/Fe and growth rate variations in two diagenetic manganese nodules[J]. Earth and Planetary Science Letters,1999,170(4):403-415.

    [13]

    HALBACH P, FRIEDRICH G, STACKELBERG U V. The manganese nodule belt of the Pacific Ocean : geological environment, nodule formation, and mining aspects[M]. Stuttgart: Ferdinand Enke, 1988.

    [14]

    HEIN J R,KOSCHINSKY A,HALBACH P,et al. Iron and manganese oxide mineralization in the Pacific[J]. Geological Society London Special Publications,1997,119(1):123-138. doi: 10.1144/GSL.SP.1997.119.01.09

    [15]

    MCSWIGGEN P. Manganese mineralization:geochemistry and mineralogy of terrestrial and marine deposits[J]. Mineralogical Magazine,1997,61(409):907-907.

    [16]

    KOSCHINSKY A,HALBACH P. Sequential leaching of marine ferromanganese precipitates:genetic implications[J]. Geochimica et Cosmochimica Acta,1995,59(24):5113-5132. doi: 10.1016/0016-7037(95)00358-4

    [17]

    BAU M,SCHMIDT K,KOSCHINSKY A,et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and Yttrium[J]. Chemical Geology,2014,381:1-9. doi: 10.1016/j.chemgeo.2014.05.004

    [18]

    黄威,胡邦琦,徐磊,等. 帕里西维拉海盆西缘中段铁锰结核的地球化学特征和成因类型[J]. 海洋地质与第四纪地质,2021,41(1):199-209. doi: 10.16562/j.cnki.0256-1492.2020101501

    [19]

    李彦杰,董明明. 海底铁锰矿物中稀土元素富集的控制因素[J]. 科技资讯,2019,17(12):76-80. doi: 10.16661/j.cnki.1672-3791.2019.12.076

    [20]

    HALBACH P,SCHERHAG C,HEBISCH U,et al. Geochemical and mineralogical control of different genetic types of deep-sea nodules from the Pacific Ocean[J]. Mineralium Deposita,1981,16(1):59-84.

    [21]

    MANCEAU A,LANSON M,TAKAHASHI Y. Mineralogy and crystal chemistry of Mn,Fe,Co,Ni,and Cu in a deep-sea Pacific polymetallic nodule[J]. American Mineralogist,2014,99(10):2068-2083. doi: 10.2138/am-2014-4742

    [22]

    HEIN J R,CONRAD T,MIZELL K,et al. Controls on ferromanganese crust composition and reconnaissance resource potential,Ninetyeast Ridge,Indian Ocean[J]. Deep Sea Research Part I:Oceanographic Research Papers,2016,110:1-19. doi: 10.1016/j.dsr.2015.11.006

    [23]

    PELLETER E,FOUQUET Y,ETOUBLEAU J,et al. Ni-Cu-Co-rich hydrothermal manganese mineralization in the Wallis and Futuna back-arc environment (SW Pacific)[J]. Ore Geology Reviews,2017,87:126-146. doi: 10.1016/j.oregeorev.2016.09.014

    [24]

    SCHMIDT K,BAU M,HEIN J R,et al. Fractionation of the geochemical twins Zr–Hf and Nb–Ta during scavenging from seawater by hydrogenetic ferromanganese crusts[J]. Geochimica et Cosmochimica Acta,2014,140:468-487. doi: 10.1016/j.gca.2014.05.036

    [25]

    LYLE M. Estimating growth rates of ferromanganese nodules from chemical compositions:implications for nodule formation processes[J]. Geochimica et Cosmochimica Acta,1982,46(11):2301-2306. doi: 10.1016/0016-7037(82)90203-4

  • 加载中

(11)

(7)

计量
  • 文章访问数:  1028
  • PDF下载数:  94
  • 施引文献:  0
出版历程
收稿日期:  2022-04-05
刊出日期:  2023-09-28

目录