-
摘要:
利用XRD方法分析了三门湾表层沉积物中的黏土矿物组成和含量,结合沉积物粒径趋势分析及长江和三门湾流域中小河流的黏土矿物组合特征,开展了三门湾沉积物的来源分析。结果表明,三门湾表层沉积物中黏土矿物以伊利石为主,其次为高岭石和绿泥石,蒙脱石含量最低。其中,伊利石高值区位于海湾中部,高岭石和绿泥石高值区分布在港汊附近,蒙脱石则在近岸呈斑块状分布。三门湾现代表层沉积物主要来源于长江入海物质,海湾周边短源山溪性河流带来的物质仅影响了河口近岸区。
Abstract:The content and composition of clay minerals from 83 surface samples in the Sanmen Bay were analyzed with XRD. Through grain size trends analysis and clay minerals assemblages characteristics of related rivers, the provenance of clay minerals and sediments resources of the Sanmen Bay were discussed. The results show that the majority of clay mineral in surface sediment in Sanmen Bay are illite, followed by kaolinite and chlorite, and the minority is smectite. The higher abundance of illite is distributed in the middle of the Sanmen Bay, and the higher kaolinite and chlorite located at the upper bay area either near the river estuaries or bay branches, and smectite displayed patchy distributions along the coast. The surface sediment in Sanmen Bay mainly comes from the Changjiang River, while sediments from small local mountainous rivers only affect the estuary area.
-
Key words:
- Sanmen Bay /
- clay minerals /
- grain size /
- provenance /
- small mountainous rivers
-
-
表 1 三门湾表层沉积物黏土矿物组合及相对含量
Table 1. Percentages of clay mineral assemblages in surface sediments of the Sanmen Bay
/% 区域 参数 蒙脱石 伊利石 高岭石 绿泥石 最低值 1.86 54.01 12.39 16.23 海域 最高值 6.77 67.89 18.47 22.08 平均值 3.85 61.66 15.34 19.15 最低值 0 18.07 21.24 19.98 河漫滩 最高值 2.74 55.75 45.89 36.03 平均值 1.22 41.26 32.16 25.36 最低值 0 11.38 26.58 5.35 山地土壤 最高值 9.17 44.93 56.08 45.82 平均值 1.15 29.57 38.46 30.82 -
[1] 刘启贞. 长江口细颗粒泥沙絮凝主要影响因子及其环境效应研究[D]. 上海: 华东师范大学, 2007
[2] 张富元, 章伟艳, 张霄宇, 等. 深海沉积物分类与命名[M]. 北京: 海洋出版社, 2013: 39-44.
[3] 杨守业. 亚洲主要河流的沉积地球化学示踪研究进展[J]. 地球科学进展,2006,21(6):648-655. doi: 10.3321/j.issn:1001-8166.2006.06.013
[4] 黄潘阳,陈培雄,来向华,等. 三门湾2003—2013年间围涂工程对水动力环境的影响研究[J]. 中国海洋大学学报(自然科学版),2017,47(10):91-98. doi: 10.16441/j.cnki.hdxb.20160472
[5] 刘晓凤,段晓勇,田元,等. 三门湾水体营养盐变化及其对人类活动的响应[J]. 海洋地质前沿,2021,37(5):46-56. doi: 10.16028/j.1009-2722.2020.052
[6] YANG H Y,XUE B,JIN L X,et al. Polychlorinated biphenyls in surface sediments of Yueqing Bay, Xiangshan Bay, and Sanmen Bay in East China Sea[J]. Chemosphere,2011,83(2):137-143. doi: 10.1016/j.chemosphere.2010.12.070
[7] 付雅晴,印萍,高飞,等. 浙江省三门湾北部潮滩互花米草遥感研究[J]. 中国海洋大学学报(自然科学版),2022,52(1):134-144. doi: 10.16441/j.cnki.hdxb.20210051
[8] YANG H Y,XUE B,YU P,et al. Residues and enantiomeric profiling of organochlorine pesticides in sediments from Yueqing Bay and Sanmen Bay, East China Sea[J]. Chemosphere,2010,80(6):652-659. doi: 10.1016/j.chemosphere.2010.04.052
[9] 胡方西,曹沛奎. 三门湾潮波运动特征及其与地貌发育的关系[J]. 海洋与湖沼,1981(3):225-234.
[10] 周阳,叶钦,施伟勇,等. 浙江中部三门湾波浪特征统计分析[J]. 海洋学报,2021,43(3):13-23.
[11] 林明祥,蔡廷禄,王欣凯,等. 近百年来浙江三门湾海岸线时空演变特征[J]. 海洋学研究,2021,39(1):47-55. doi: 10.3969/j.issn.1001-909X.2021.01.006
[12] 陈晓英,张杰,马毅,等. 近40 a来三门湾海岸线时空变化遥感监测与分析[J]. 海洋科学,2015,39(2):43-49. doi: 10.11759/hykx20141011004
[13] 叶梦姚,李加林,史小丽,等. 1990—2015年浙江省大陆岸线变迁与开发利用空间格局变化[J]. 地理研究,2017,36(6):1159-1170.
[14] 梁静香,周永东,王忠明,等. 三门湾大型底栖动物群落结构及其与环境因子的关系[J]. 应用生态学报,2020,31(9):3187-3193. doi: 10.13287/j.1001-9332.202009.037
[15] 严润玄,韩庆喜,王晓波. 杭州湾和三门湾拖网大型底栖动物群落组成和多样性研究[J]. 海洋与湖沼,2020,51(3):484-493. doi: 10.11693/hyhz20191200272
[16] ZÖLLMER V, IRION G. Clay mineral and heavy metal distributions in the northeastern North Sea. Marine Geology, 1993, 111: 223-230.
[17] 李安春,张凯棣. 东海内陆架泥质沉积体研究进展[J]. 海洋与湖沼,2020,51(4):705-727. doi: 10.11693/hyhz20200500145
[18] 杨士雄,叶思源,何磊,等. 渤海湾西岸全新世以来沉积物地球化学与黏土矿物特征及其对环境和气候的响应[J]. 海洋地质与第四纪地质,2021,41(2):75-87. doi: 10.16562/j.cnki.0256-1492.2020092901
[19] LIU Z F,COLIN C,LI X J,et al. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: source and transport[J]. Marine Geology,2010,277(1/4):48-60.
[20] ZHAO Y,ZOU X,GAO J,et al. Clay mineralogy and source-to-sink transport processes of Changjiang River sediments in the estuarine and inner shelf areas of the East China Sea[J]. Journal of Asian earth Sciences,2017,152:91-102.
[21] 许建平,杨士英. 三门湾海洋生态环境概述[J]. 能源工程,1992(2):28-30. doi: 10.16189/j.cnki.nygc.1992.02.011
[22] 《中国海湾志》编纂委员会. 中国海湾志第五分册: 上海市和浙江省北部海湾[M]. 北京: 海洋出版社, 1992: 234-308.
[23] BISCAYE P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. GSA Bulletin,1965,76(7):803-832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2
[24] MCMANUS J. Grain size determination and interpretation [M]//Tucker M E. Techniques in sedimentology. Oxford: Blackwell Scientific Publications, 1988.
[25] GAO S, COLLINS M. Analysis of grain size trends, for defining sediment transport pathways in marine environments[J]. Journal of Coastal Research,1994,10(1):70-78.
[26] 石学法,刘升发,乔淑卿,等. 东海闽浙沿岸泥质区沉积特征与古环境记录[J]. 海洋地质与第四纪地质,2010,30(4):19-30.
[27] GAO S,COLLINS M. The use of grain size trends in marine sediment dynamics:a review[J]. Chinese Journal of Oceanology and Limnology,2001,19(3):265-271. doi: 10.1007/BF02850664
[28] 石学法,刘焱光,任红,等. 南黄海中部沉积物粒径趋势分析及搬运作用[J]. 科学通报,2002,47(6):452-456.
[29] GAO S,COLLINS M,LANCKNEUS J,et al. Grain size trend associated with net sediment transport patterns: an example from the Belgian continental shelf[J]. Marine Geology,1994:171-185.
[30] PEDREROS R,HOWA H L,MICHEL D. Application of Grain size trend analysis for the determination of sediment transport pathways in intertidal areas[J]. Marine Geology,1996,135:35-49. doi: 10.1016/S0025-3227(96)00042-4
[31] 刘兴兴,张东,韩飞. 基于PCA和WNN的潮滩沉积物粒度与运移趋势的遥感研究[J]. 海洋与湖沼,2019,50(6):1168-1180. doi: 10.11693/hyhz20190500092
[32] 汪亚平,高抒,贾建军. 胶州湾及临近海域沉积物分布特征和运移趋势[J]. 地理学报,2000,55(4):449-458. doi: 10.3321/j.issn:0375-5444.2000.04.007
[33] 曹珂,李梅娜,刘金庆. 滦河三角洲表层沉积物黏土矿物特征[J]. 海洋地质与第四纪地质,2016,36(6):7-11. doi: 10.16562/j.cnki.0256-1492.2016.06.002
[34] 陈涛,王欢,张祖青,等. 黏土矿物对古气候指示作用浅析[J]. 岩石矿物学杂志,2003,22(4):416-420. doi: 10.3969/j.issn.1000-6524.2003.04.022
[35] 何梦颖,郑洪波,黄湘通,等. 长江流域沉积物粘土矿物组合特征及物源指示意义[J]. 沉积学报,2011,29(6):544-551.
[36] CHAMLEY H. Clay Sedimentology[M]. Berkin: Springer, 1989.
[37] MEUNIER A. Les mécanismes de l’altération des granites et le role des microsystems. Etude des arenas du massif granitique de Parthenay(Deux-Sevres)[M]. Mém. Soc. Geol.Fr., 1980.
[38] CHAMLEY H. Clay formation through weathering[J]. Clay Sedimentology,1989:21-50.
[39] 杨守业,李从先. 长江与黄河沉积物元素组成及地质背景[J]. 海洋地质与第四纪地质,1999,19(2):21-28. doi: 10.16562/j.cnki.0256-1492.1999.02.003
[40] 梁小龙,杨守业,印萍,等. 黄海与东海周边河流及泥质区沉积物黏土矿物的分布特征和控制因素[J]. 海洋地质与第四纪地质,2015,35(6):1-15. doi: 10.16562/j.cnki.0256-1492.2015.06.001
[41] 朱凤冠,李秀珠,高水土. 东海大陆架沉积物中粘土矿物的研究[J]. 东海海洋,1988,6(1):40-51.
[42] 游仲华,唐锦龙. 台湾海峡西部沉积物中粘土矿物的初步研究[J]. 沉积学报,1992,10(4):130-136. doi: 10.14027/j.cnki.cjxb.1992.04.015
[43] 杨作升. 黄河、长江、珠江沉积物中黏土的矿物组合、化学特征及其与物源区气候环境的关系[J]. 海洋与湖沼,1988:19.
[44] 陈丽蓉. 中国海沉积矿物学[M]. 北京: 海洋出版社, 2008.
[45] 周晓静,高抒,贾建军. 长江粘土矿物示踪标记稳定性的初步研究[J]. 海洋和湖沼,2003,34(6):683-692.
[46] 刘晓凤. 三门湾水体营养盐变化及其对人类活动响应研究[D]. 青岛: 中国海洋大学, 2021.
[47] 夏小明. 三门湾潮汐汊道系统的稳定性[D]. 杭州: 浙江大学, 2011.
-