Molecular geochemical characteristics and hydrocarbon genesis of source rocks in Well LW21-A in ultra-deep water area of Pearl River Mouth Basin
-
摘要:
珠江口盆地超深水区勘探程度低,珠四坳陷仅LW21-A井有油气发现,通过对其进行系统地特征分子地球化学测试与分析,揭示了所钻遇烃源岩的类型和发现油气的成因。该钻井揭示,文昌组和恩平组发育海相(海侵)泥岩和微咸水浅湖相(近海湖盆)泥岩;LW21构造气藏中存在海相(海侵)和湖相2类凝析油;LW21构造气藏中天然气主要成分为CO2,属于CO2气藏,含一定量烷烃气;CO2主要是无机幔源型成因气,烷烃气主要是油型气与海相生物气的混合型干气。这一认识对珠江口盆地超深水区珠四坳陷带的进一步评价和勘探决策具有重要意义。
Abstract:The ultra-deep water area of the Pearl River Mouth Basin remains poorly explored, from which only LW21-A well in the Zhusi Depression has oil and gas discovered. Through systematic molecular geochemical testing and analysis, the types of hydrocarbon source rocks encountered were specified and the genesis of oil and gas discovered were revealed. Result shows that the Wenchang Formation and Enping Formation of the well developed marine (transgression) mudstone and brackish shallow lake (offshore lake basin) mudstone. There are two types of condensate in LW21 structural gas reservoir: marine (transgressive) and lacustrine. The main component of natural gas in LW21 structural gas reservoir is CO2, which belongs to CO2 gas reservoir and contains a certain amount of alkane gas. CO2 is mainly inorganic mantle-derived genetic gas, alkane gas is mixed dry gas, mainly the mixture of oil-type gas and marine biogenic gas. This understanding is of great significance to the further evaluation and exploration decision of the Zhusi Depression zone in the ultra-deep water area of the Pearl River Mouth basin.
-
-
图 4 甘油双烷基甘油四醚的分子结构式[17]
Figure 4.
表 1 LW21-A井泥岩样品CPI和BIT数据统计
Table 1. The CPI and BIT data of mudstone samples from Well LW21-A
层位 深度/m CPI BIT 恩平组 3 643~3 646 1.15 0.33 3 673~3 676 1.21 0.23 3 685~3 688 1.08 0.31 3 712~3 715 1.09 0.34 3 718~3 721 1.02 0.29 文昌组 3 790~3 793 1.06 0.32 3 808~3 811 1.16 0.29 3 838~3 841 1.08 0.34 3 853~3 856 1.05 0.29 3 868~3 871 0.98 0.14 3 898~3 901 1.05 0.22 3 910~3 913 1.02 0.24 3 934~3 937 1.11 0.07 3 964~3 967 1.02 0.29 4 006~4 009 1.00 0.28 表 2 LW21-A井PVT样品天然气组成特征
Table 2. Natural gas compositions of the PVT samples from Well LW21-A
样品编号 气体含量/(%V/V) C1-7/(%V/V) 干燥系数/% 甲烷 乙烷 乙烯 丙烷 丙烯 iC4 nC4 丁烯 iC5 nC5 C6 C7 H2 CO2 H2S O2 N2 CO BAG-3189m 30.9 0.58 - 0.24 - 0.034 0.036 - 0.01 0.005 - - 0.53 59.36 - - 8.4 - 31.81 97.15 BAG-3321m 2.82 0.06 - 0.03 - 0.004 0.003 - 0.001 - - - 0.01 92.41 - - 4.68 - 2.92 96.64 SC-3184.9m 35.04 0.68 - 0.28 - 0.042 0.043 - 0.012 0.004 - - 0.01 62.16 - - 1.73 - 36.1 97.06 SC-3321.2m 12.29 0.07 - 0.01 - 0.001 0.001 - - - - - 0.01 87.61 - - - - 12.37 99.34 SC-3370.1m 5.74 0.06 - 0.01 - 0.002 0.001 - - - - - 0.14 91.77 - - 2.27 - 5.81 98.74 注:“-”为无数据。 -
[1] 朱俊章,施和生,舒誉,等. 珠江口盆地烃源岩有机显微组分特征与生烃潜力分析[J]. 石油实验地质,2007,29(3):301-306.
[2] 朱俊章,施和生,庞雄,等. 珠江口盆地白云凹陷深水区珠海组烃源岩评价及储层烃来源分析[J]. 中国海上油气,2008,20(4):223-227.
[3] 张功成,王璞珺,吴景富,等. 边缘海构造旋回:南海演化的新模式[J]. 地学前缘,2015,22(3):27-37
[4] 张功成,屈红军,刘世翔,等. 边缘海构造旋回控制南海深水区油气成藏[J]. 石油学报,2015,36(5):533-545.
[5] 张功成,米立军,吴时国,等. 深水区:南海北部大陆边缘盆地油气勘探新领域[J]. 石油学报,2007,28(2):15-21.
[6] 戴娜,钟宁宁,邓运华,等. 中生代-新生代大陆边缘盆地海相烃源岩成因类型[J]. 石油学报,2015,36(8):940-953.
[7] 邓运华. 试论海湾对海相石油的控制作用[J]. 石油学报,2018,39(1):1-11.
[8] 张浩,邵磊,张功成,等. 南海始新世海相地层分布及油气地质意义[J]. 地球科学,2015,40(4):660-670.
[9] 苗顺德,张功成,梁建设,等. 南海北部超深水区荔湾凹陷恩平组三角洲沉积体系及其烃源岩特征[J]. 石油学报,2013,34(S2):57-65.
[10] 傅宁,米立军,张功成. 珠江口盆地白云凹陷烃源岩及北部油气成因[J]. 石油学报,2007,28(3):32-38.
[11] 李友川,张功成,傅宁. 珠江口盆地油气分带性及其控制因素[J]. 中国海上油气,2014,26(4):8-14.
[12] 米立军,何敏,翟普强,等. 珠江口盆地深水区白云凹陷高热流背景油气类型与成藏时期综合分析[J]. 中国海上油气,2019,31(1):1-12.
[13] 刘传联,陈莹,龚瑞雪,等. 南海IODP U1501站始新统—渐新统有机地球化学特征及烃源条件分析[J]. 中国海上油气,2020,32(5):19-25.
[14] 陶文芳,李洪博,郑金云,等. 南海北部陆缘超深水区珠四坳陷地质结构及其对烃源岩发育的控制[J]. 海洋地质前沿,2023,39(1):40-48.
[15] 侯读杰,冯子辉. 油气地球化学[M]. 北京:石油工业出版社,2011.
[16] HOPMANS E C,WEIJERS J W H ,SCHEFU Β E,et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraecher lipids[J]. Earth and Planetary Science Letters,2004,224:107-116.
[17] RUEDA G,ROSELL-MEL A,ESCALA M,et al. Comparison of instrumental and GDGT-based estimates of sea surface and air temperatures from the Skagerrak[J]. Organic Geochemistry,2009,40:287-291. doi: 10.1016/j.orggeochem.2008.10.012
[18] WEIJERS J W H,SCHOUTEN S,SPAARGAREN O C,et al. Occurrence and distribution of tetraether membrane lipids in soils:implications for the use of the TEX86 proxy and the BIT index[J]. Organic Geochemistry,2006,37:1680-1693. doi: 10.1016/j.orggeochem.2006.07.018
[19] SCHOUTEN S,HOPMANS E C,PANCOST R D,et al. Widespread occurrence of structurally diverse tetraether membrane lipids:evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles[J]. Proceedings of the National Academy Sciences of the United States of America》,2000,97(26):14421-14426. doi: 10.1073/pnas.97.26.14421
[20] HERFORT L,SCHOUTEN S,BOON J P,et al. Characterization of transport and deposition of terrestrial organic matter in the southern North Sea using the BIT index[J]. Limnology and Oceanography,2006,51:2196-2205. doi: 10.4319/lo.2006.51.5.2196
[21] KIM J H,SCHOUTEN S,BUSCAIL R,et al. Origin and distribution of terrestrial organic matter in the NW Mediterranean (Gulf of Lions):exploring the newly developed BIT index[J]. Geochemistry,Geophysics,Geosystems,2006,7:1-20.
[22] WALSH E M,INGALLS A E,KEIL R G. Sources and transport of terrestrial organic matter in Vancouver Island fjords and the Vancouver-Washington Margin:a multiproxy approach using δ13C(org),lignin phenols,and the ether lipid BIT index[J]. Limnology and Oceanography,2008,53:1054-1063. doi: 10.4319/lo.2008.53.3.1054
[23] WOLFF G A,LAMB N A,MAXWELL J R. The origin and fate of 4-methyl steroid hydrocarbons I. diagenesis of 4-methyl sterenes[J]. Geochimica et Cosmochimica Acta,1986,50(3):335-342. doi: 10.1016/0016-7037(86)90187-0
[24] 王培荣,张大江,宋孚庆,等. 区分渤中坳陷三套烃源岩的地球化学参数组合[J]. 中国海上油气,2004,16(3):157-160.
[25] 傅宁. 论4-甲基C30甾烷丰度与烃源岩质量的关系:基于北部湾盆地勘探实践[J]. 中国海上油气,2018,30(5):11-20.
[26] VANAARSSEN B G K,HESSELS J K C,ABBINK O A,et al. The occurrence of polycylic sesqui-,tri-,and oligoterpenoids derived from a resinous polymeric cadinene in crude oils from Southeast Asia[J]. Geochim Cosmochim Acta,1992,56(3):1231-1246. doi: 10.1016/0016-7037(92)90059-R
[27] 张金泉,王兰州. 龙脑香科植物的地理分布[J]. 植物学通报,1985,3(5):1-8.
[28] SUMMONS R E,THOMAS J,MAXWELL J R,et al. Secular and environmental constraints on the occurrence of dinosteranse in sediments[J]. Geochemica et Cosmochimica Acta,1992,56:2437-2444. doi: 10.1016/0016-7037(92)90200-3
[29] GOODMAN D K. Dinoflagellate cysts in ancient and moden sediments[J]. Biology of Dinoflagllates,1987,21:649-722.
[30] MACKENZIE A S. Advances in Petroleum Geochemistry[M]. Application of biological markers in petroleum geochemistry. Academic press,1984:115-206.
[31] PHILIPPI G T. Pretenis as a possible source material of low molecular weight petroleum hydrocarbons[J]. Geochimica et Cosmochimica Acta,1997,41(2):1083-1086.
[32] TISSOT B P,WELTE D H. Petroleum formation and occurrence[M]. Berlin:Springer-Verlag,1984:386-389.
[33] HUNT J M. Generation and migration of light hydrocarbons[J]. Science,1984,226:1265-1270. doi: 10.1126/science.226.4680.1265
[34] LEYTHAEUSER D. Generation and migretion of light hudrocarbons (C2-C7)in sedimentary basins[J]. Org Geochem,1979,1(4):191-204. doi: 10.1016/0146-6380(79)90022-6
[35] YOUNG A. Calculation of ages of hydrabons in oils-physical chemistry applied to petroleum geochemistry[J]. AAPG Bull,1997,61:573-600.
[36] THOMPSON K F M. Classification and thermal history of petroleum based on light hydrocarbons[J]. Geochim Cosmochim Acta,1983,47(2):303-316. doi: 10.1016/0016-7037(83)90143-6
-